Learn R Programming

distr6 (version 1.3.1)

Cauchy: Cauchy Distribution Class

Description

Mathematical and statistical functions for the Cauchy distribution, which is commonly used in physics and finance.

Value

Returns an R6 object inheriting from class SDistribution.

Constructor

Cauchy$new(location = 0, scale = 1, decorators = NULL, verbose = FALSE)

Constructor Arguments

Argument Type Details
location numeric location parameter.
scale numeric scale parameter.

decorators Decorator decorators to add functionality. See details.

Constructor Details

The Cauchy distribution is parameterised with location as a numeric and scale as a positive numeric.

Public Variables

Variable Return
name Name of distribution.
short_name Id of distribution.
description Brief description of distribution.

Public Methods

Accessor Methods Link
decorators() decorators
traits() traits
valueSupport() valueSupport
variateForm() variateForm
type() type
properties() properties
support() support
symmetry() symmetry
sup() sup
inf() inf
dmax() dmax
dmin() dmin
skewnessType() skewnessType
kurtosisType() kurtosisType

Statistical Methods

Link
pdf(x1, ..., log = FALSE, simplify = TRUE) pdf
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) cdf
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) quantile.Distribution
rand(n, simplify = TRUE) rand
mean() mean.Distribution
variance() variance
stdev() stdev
prec() prec
cor() cor
skewness() skewness
kurtosis(excess = TRUE) kurtosis
entropy(base = 2) entropy
mgf(t) mgf
cf(t) cf
pgf(z) pgf
median() median.Distribution
iqr() iqr

Parameter Methods

Link
parameters(id) parameters
getParameterValue(id, error = "warn") getParameterValue
setParameterValue(..., lst = NULL, error = "warn") setParameterValue

Validation Methods

Link
liesInSupport(x, all = TRUE, bound = FALSE) liesInSupport
liesInType(x, all = TRUE, bound = FALSE) liesInType

Representation Methods

Link
strprint(n = 2) strprint
print(n = 2) print
summary(full = T) summary.Distribution

Details

The Cauchy distribution parameterised with location, \(\alpha\), and scale, \(\beta\), is defined by the pdf, $$f(x) = 1 / (\pi\beta(1 + ((x - \alpha) / \beta)^2))$$ for \(\alpha \epsilon R\) and \(\beta > 0\).

The distribution is supported on the Reals.

The mean and variance are undefined, hence NaN is returned.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

See Also

listDistributions for all available distributions.

Examples

Run this code
# NOT RUN {
x = Cauchy$new(location = 2, scale = 5)

# Update parameters
x$setParameterValue(scale = 3)
x$parameters()

# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)

# Statistics
x$mean()
x$variance()

summary(x)

# }

Run the code above in your browser using DataLab