Learn R Programming

distr6 (version 1.3.1)

Dirichlet: Dirichlet Distribution Class

Description

Mathematical and statistical functions for the Dirichlet distribution, which is commonly used as a prior in Bayesian modelling and is multivariate generalisation of the Beta distribution.

Value

Returns an R6 object inheriting from class SDistribution.

Constructor

Dirichlet$new(params = c(1, 1), decorators = NULL, verbose = FALSE)

Constructor Arguments

Argument Type Details
params numeric vector of concentration parameters.

decorators Decorator decorators to add functionality. See details.

Constructor Details

The Dirichlet distribution is parameterised with params as a vector of positive numerics. The parameter K is automatically calculated by counting the length of the params vector, once constructed this cannot be changed.

Public Variables

Variable Return
name Name of distribution.
short_name Id of distribution.
description Brief description of distribution.

Public Methods

Accessor Methods Link
decorators() decorators
traits() traits
valueSupport() valueSupport
variateForm() variateForm
type() type
properties() properties
support() support
symmetry() symmetry
sup() sup
inf() inf
dmax() dmax
dmin() dmin
skewnessType() skewnessType
kurtosisType() kurtosisType

Statistical Methods

Link
pdf(x1, ..., log = FALSE, simplify = TRUE) pdf
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) cdf
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) quantile.Distribution
rand(n, simplify = TRUE) rand
mean() mean.Distribution
variance() variance
stdev() stdev
prec() prec
cor() cor
skewness() skewness
kurtosis(excess = TRUE) kurtosis
entropy(base = 2) entropy
mgf(t) mgf
cf(t) cf
pgf(z) pgf
median() median.Distribution
iqr() iqr

Parameter Methods

Link
parameters(id) parameters
getParameterValue(id, error = "warn") getParameterValue
setParameterValue(..., lst = NULL, error = "warn") setParameterValue

Validation Methods

Link
liesInSupport(x, all = TRUE, bound = FALSE) liesInSupport
liesInType(x, all = TRUE, bound = FALSE) liesInType

Representation Methods

Link
strprint(n = 2) strprint
print(n = 2) print
summary(full = T) summary.Distribution

Details

The Dirichlet distribution parameterised with concentration parameters, \(\alpha_1,...,\alpha_k\), is defined by the pdf, $$f(x_1,...,x_k) = (\prod \Gamma(\alpha_i))/(\Gamma(\sum \alpha_i))\prod(x_i^{\alpha_i - 1})$$ for \(\alpha = \alpha_1,...,\alpha_k; \alpha > 0\), where \(\Gamma\) is the gamma function.

The distribution is supported on \(x_i \ \epsilon \ (0,1), \sum x_i = 1\).

mgf and cf are omitted as no closed form analytic expression could be found, decorate with CoreStatistics for numerical results. cdf and quantile are omitted as no closed form analytic expression could be found, decorate with FunctionImputation for a numerical imputation.

Sampling is performed via sampling independent Gamma distributions and normalising the samples (Devroye, 1986).

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

Devroye, Luc (1986). Non-Uniform Random Variate Generation. Springer-Verlag. ISBN 0-387-96305-7.

See Also

listDistributions for all available distributions. Beta for the Beta distribution. CoreStatistics for numerical results. FunctionImputation to numerically impute d/p/q/r.

Examples

Run this code
# NOT RUN {
# Different parameterisations
x <- Dirichlet$new(params = c(2,5,6))

# Update parameters
x$setParameterValue(params = c(3, 2, 3))
# 'K' parameter is automatically calculated
x$parameters()
# }
# NOT RUN {
# This errors as less than three parameters supplied
x$setParameterValue(params = c(1, 2))
# }
# NOT RUN {
# d/p/q/r
# Note the difference from R stats
x$pdf(0.1, 0.4, 0.5)
# This allows vectorisation:
x$pdf(c(0.3, 0.2), c(0.6, 0.9), c(0.9,0.1))
x$rand(4)

# Statistics
x$mean()
x$variance()

summary(x)

# }

Run the code above in your browser using DataLab