Mathematical and statistical functions for the Gompertz distribution, which is commonly used in survival analysis particularly to model adult mortality rates..
Returns an R6 object inheriting from class SDistribution.
Gompertz$new(shape = 1, scale = 1, decorators = NULL, verbose = FALSE)
Argument | Type | Details |
shape |
numeric | positive shape parameter. |
scale |
numeric | positive scale parameter. |
decorators
The Gompertz distribution is parameterised with shape
and scale
as positive numerics.
Variable | Return |
name |
Name of distribution. |
short_name |
Id of distribution. |
description |
Brief description of distribution. |
Accessor Methods | Link |
decorators() |
decorators |
traits() |
traits |
valueSupport() |
valueSupport |
variateForm() |
variateForm |
type() |
type |
properties() |
properties |
support() |
support |
symmetry() |
symmetry |
sup() |
sup |
inf() |
inf |
dmax() |
dmax |
dmin() |
dmin |
skewnessType() |
skewnessType |
kurtosisType() |
kurtosisType |
Statistical Methods |
Link |
pdf(x1, ..., log = FALSE, simplify = TRUE) |
pdf |
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) |
cdf |
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) |
quantile.Distribution |
rand(n, simplify = TRUE) |
rand |
mean() |
mean.Distribution |
variance() |
variance |
stdev() |
stdev |
prec() |
prec |
cor() |
cor |
skewness() |
skewness |
kurtosis(excess = TRUE) |
kurtosis |
entropy(base = 2) |
entropy |
mgf(t) |
mgf |
cf(t) |
cf |
pgf(z) |
pgf |
median() |
median.Distribution |
iqr() |
iqr |
Parameter Methods |
Link |
parameters(id) |
parameters |
getParameterValue(id, error = "warn") |
getParameterValue |
setParameterValue(..., lst = NULL, error = "warn") |
setParameterValue |
Validation Methods |
Link |
liesInSupport(x, all = TRUE, bound = FALSE) |
liesInSupport |
liesInType(x, all = TRUE, bound = FALSE) |
liesInType |
Representation Methods |
Link |
strprint(n = 2) |
strprint |
print(n = 2) |
print |
summary(full = T) |
summary.Distribution |
The Gompertz distribution parameterised with shape, \(\alpha\), and scale, \(\beta\), is defined by the pdf, $$f(x) = \alpha\beta exp(x\beta)exp(\alpha)exp(-exp(x\beta)\alpha)$$ for \(\alpha, \beta > 0\).
The distribution is supported on the Non-Negative Reals.
mean
, var
, mgf
, cf
, entropy
, skewness
and kurtosis
are
omitted as no closed form analytic expression could be found, decorate with CoreStatistics
for numerical results.
Unfortunately the Gompertz distribution is quite complex to deal with and as such no closed form expressions exist for its mathematical and statistical properties.
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
listDistributions
for all available distributions. CoreStatistics
for numerical results.
# NOT RUN {
x <- Gompertz$new(shape = 2, scale = 3)
# Update parameters
x$setParameterValue(scale = 1)
x$parameters()
# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)
summary(x)
# }
Run the code above in your browser using DataLab