Learn R Programming

distr6 (version 1.3.1)

Hypergeometric: Hypergeometric Distribution Class

Description

Mathematical and statistical functions for the Hypergeometric distribution, which is commonly used to model the number of successes out of a population containing a known number of possible successes, for example the number of red balls from an urn or red, blue and yellow balls.

Value

Returns an R6 object inheriting from class SDistribution.

Constructor

Hypergeometric$new(size = 10, successes = 5, failures = NULL, draws = 2, decorators = NULL, verbose = FALSE)

Constructor Arguments

Argument Type Details
size numeric population size.
successes numeric number of population successes.
failures numeric number of population failures.
draws numeric number of draws.

decorators Decorator decorators to add functionality. See details.

Constructor Details

The Hypergeometric distribution is parameterised with size and draws as positive whole numbers, and either successes or failures as positive whole numbers. These are related via, $$failures = size - successes$$ If failures is given then successes is ignored.

Public Variables

Variable Return
name Name of distribution.
short_name Id of distribution.
description Brief description of distribution.

Public Methods

Accessor Methods Link
decorators() decorators
traits() traits
valueSupport() valueSupport
variateForm() variateForm
type() type
properties() properties
support() support
symmetry() symmetry
sup() sup
inf() inf
dmax() dmax
dmin() dmin
skewnessType() skewnessType
kurtosisType() kurtosisType

Statistical Methods

Link
pdf(x1, ..., log = FALSE, simplify = TRUE) pdf
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) cdf
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) quantile.Distribution
rand(n, simplify = TRUE) rand
mean() mean.Distribution
variance() variance
stdev() stdev
prec() prec
cor() cor
skewness() skewness
kurtosis(excess = TRUE) kurtosis
entropy(base = 2) entropy
mgf(t) mgf
cf(t) cf
pgf(z) pgf
median() median.Distribution
iqr() iqr

Parameter Methods

Link
parameters(id) parameters
getParameterValue(id, error = "warn") getParameterValue
setParameterValue(..., lst = NULL, error = "warn") setParameterValue

Validation Methods

Link
liesInSupport(x, all = TRUE, bound = FALSE) liesInSupport
liesInType(x, all = TRUE, bound = FALSE) liesInType

Representation Methods

Link
strprint(n = 2) strprint
print(n = 2) print
summary(full = T) summary.Distribution

Details

The Hypergeometric distribution parameterised with population size, \(N\), number of possible successes, \(K\), and number of draws from the distribution, \(n\), is defined by the pmf, $$f(x) = C(K, x)C(N-K,n-x)/C(N,n)$$ for \(N = \{0,1,2,\ldots\}\), \(n, K = \{0,1,2,\ldots,N\}\) and \(C(a,b)\) is the combination (or binomial coefficient) function.

The distribution is supported on \(\{max(0, n + K - N),...,min(n,K)\}\).

mgf and cf are omitted as no closed form analytic expression could be found, decorate with CoreStatistics for numerical results.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

See Also

listDistributions for all available distributions. CoreStatistics for numerical results.

Examples

Run this code
# NOT RUN {
Hypergeometric$new(size = 10, successes = 7, draws = 5)
Hypergeometric$new(size = 10, failures = 3, draws = 5)

# Default is size = 50, successes = 5, draws = 10
x = Hypergeometric$new(verbose = TRUE)

# Update parameters
# When any parameter is updated, all others are too!
x$setParameterValue(failures = 10)
x$parameters()

# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)

# Statistics
x$mean()
x$variance()

summary(x)

# }

Run the code above in your browser using DataLab