Learn R Programming

distr6 (version 1.3.1)

TruncatedDistribution: Distribution Truncation Wrapper

Description

A wrapper for truncating any probability distribution at given limits.

Value

Returns an R6 object of class TruncatedDistribution.

Constructor

TruncatedDistribution$new(distribution, lower = NULL, upper = NULL)

Constructor Arguments

Argument Type Details
distribution distribution Distribution to truncate.
lower numeric Lower limit for truncation.

Public Variables

Variable Return
name Name of distribution.
short_name Id of distribution.
description Brief description of distribution.

Public Methods

Accessor Methods Link
wrappedModels(model = NULL) wrappedModels
decorators() decorators
traits() traits
valueSupport() valueSupport
variateForm() variateForm
type() type
properties() properties
support() support
symmetry() symmetry
sup() sup
inf() inf
dmax() dmax
dmin() dmin
skewnessType() skewnessType
kurtosisType() kurtosisType
d/p/q/r Methods Link
pdf(x1, ..., log = FALSE, simplify = TRUE) pdf
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) cdf
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) quantile.Distribution
rand(n, simplify = TRUE) rand
Statistical Methods Link
prec() prec
stdev() stdev
median() median.Distribution
iqr() iqr
cor() cor
Parameter Methods Link
parameters(id) parameters
getParameterValue(id, error = "warn") getParameterValue
setParameterValue(..., lst = NULL, error = "warn") setParameterValue
Validation Methods Link
liesInSupport(x, all = TRUE, bound = FALSE) liesInSupport
liesInType(x, all = TRUE, bound = FALSE) liesInType
Representation Methods Link
strprint(n = 2) strprint
print(n = 2) print
summary(full = T) summary.Distribution

Details

Truncates a distribution at lower and upper limits, using the formulae $$f_T(x) = f_X(x) / (F_X(upper) - F_X(lower))$$ $$F_T(x) = (F_X(x) - F_X(lower)) / (F_X(upper) - F_X(lower))$$ where \(f_T\)/\(F_T\) is the pdf/cdf of the truncated distribution T = Truncate(X, lower, upper) and \(f_X\), \(F_X\) is the pdf/cdf of the original distribution.

If lower or upper are NULL they are taken to be self$inf() and self$sup() respectively. The support of the new distribution is the interval of points between lower and upper.

The pdf and cdf of the distribution are required for this wrapper, if unavailable decorate with FunctionImputation first.

See Also

listWrappers, FunctionImputation, truncate

Examples

Run this code
# NOT RUN {
truncBin <- TruncatedDistribution$new(
            Binomial$new(prob = 0.5, size = 10),
            lower = 2, upper = 4)
truncBin$getParameterValue("prob")

# }

Run the code above in your browser using DataLab