Mathematical and statistical functions for the Wald distribution, which is commonly used for modelling the first passage time for Brownian motion.
Returns an R6 object inheriting from class SDistribution.
Wald$new(mean = 1, shape = 1, decorators = NULL, verbose = FALSE)
Argument | Type | Details |
mean |
numeric | location parameter. |
shape |
numeric | shape parameter. |
decorators
The Wald distribution is parameterised with mean
and shape
as positive numerics.
Variable | Return |
name |
Name of distribution. |
short_name |
Id of distribution. |
description |
Brief description of distribution. |
Accessor Methods | Link |
decorators() |
decorators |
traits() |
traits |
valueSupport() |
valueSupport |
variateForm() |
variateForm |
type() |
type |
properties() |
properties |
support() |
support |
symmetry() |
symmetry |
sup() |
sup |
inf() |
inf |
dmax() |
dmax |
dmin() |
dmin |
skewnessType() |
skewnessType |
kurtosisType() |
kurtosisType |
Statistical Methods |
Link |
pdf(x1, ..., log = FALSE, simplify = TRUE) |
pdf |
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) |
cdf |
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) |
quantile.Distribution |
rand(n, simplify = TRUE) |
rand |
mean() |
mean.Distribution |
variance() |
variance |
stdev() |
stdev |
prec() |
prec |
cor() |
cor |
skewness() |
skewness |
kurtosis(excess = TRUE) |
kurtosis |
entropy(base = 2) |
entropy |
mgf(t) |
mgf |
cf(t) |
cf |
pgf(z) |
pgf |
median() |
median.Distribution |
iqr() |
iqr |
Parameter Methods |
Link |
parameters(id) |
parameters |
getParameterValue(id, error = "warn") |
getParameterValue |
setParameterValue(..., lst = NULL, error = "warn") |
setParameterValue |
Validation Methods |
Link |
liesInSupport(x, all = TRUE, bound = FALSE) |
liesInSupport |
liesInType(x, all = TRUE, bound = FALSE) |
liesInType |
Representation Methods |
Link |
strprint(n = 2) |
strprint |
print(n = 2) |
print |
summary(full = T) |
summary.Distribution |
The Wald distribution parameterised with mean, \(\mu\), and shape, \(\lambda\), is defined by the pdf, $$f(x) = (\lambda/(2x^3\pi))^{1/2} exp((-\lambda(x-\mu)^2)/(2\mu^2x))$$ for \(\lambda > 0\) and \(\mu > 0\).
The distribution is supported on the Positive Reals.
entropy
is
omitted as no closed form analytic expression could be found, decorate with CoreStatistics
for numerical results.
quantile
is
omitted as no closed form analytic expression could be found, decorate with FunctionImputation
for a numerical imputation.
Also known as the Inverse Normal distribution. Sampling is performed as per Michael, Schucany, Haas (1976).
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
Michael, John R.; Schucany, William R.; Haas, Roy W. (May 1976). "Generating Random Variates Using Transformations with Multiple Roots". The American Statistician. 30 (2): 88<U+2013>90. doi:10.2307/2683801. JSTOR 2683801.
listDistributions
for all available distributions. Normal
for the Normal distribution. CoreStatistics
for numerical results. FunctionImputation
to numerically impute d/p/q/r.
# NOT RUN {
x = Wald$new(mean = 2, shape = 5)
# Update parameters
x$setParameterValue(shape = 3)
x$parameters()
# d/p/q/r
x$pdf(5)
x$cdf(5)
x$rand(4)
# Statistics
x$mean()
x$variance()
summary(x)
# }
Run the code above in your browser using DataLab