Statistical Methods
pdf(x1, ..., log = FALSE, simplify = TRUE) pdf cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) cdfquantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) quantile.Distribution rand(n, simplify = TRUE) rand mean() mean.Distribution variance() variance stdev() stdev prec() prec cor() cor skewness() skewness kurtosis(excess = TRUE) kurtosis entropy(base = 2) entropy mgf(t) mgf cf(t) cf pgf(z) pgf median() median.Distribution iqr() iqr mode(which = "all") mode
Parameter Methods
parameters(id) parameters getParameterValue(id, error = "warn") getParameterValue setParameterValue(..., lst = NULL, error = "warn") setParameterValue
Validation Methods
liesInSupport(x, all = TRUE, bound = FALSE) liesInSupport liesInType(x, all = TRUE, bound = FALSE) liesInType
Representation Methods
strprint(n = 2) strprint print(n = 2) print summary(full = T) summary.Distribution # NOT RUN {
# Different parameterisations
Geometric$new(prob = 0.2)
Geometric$new(qprob = 0.7)
# Different forms of the distribution
Geometric$new(trials = TRUE) # Number of trials before first success
Geometric$new(trials = FALSE) # Number of failures before first success
# Use description to see which form is used
Geometric$new(trials = TRUE)$description
Geometric$new(trials = FALSE)$description
# Default is prob = 0.5 and number of failures before first success
x <- Geometric$new()
# Update parameters
# When any parameter is updated, all others are too!
x$setParameterValue(qprob = 0.2)
x$parameters()
# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)
# Statistics
x$mean()
x$variance()
summary(x)
# }
Run the code above in your browser using DataLab