Statistical Methods
pdf(x1, ..., log = FALSE, simplify = TRUE)
pdf
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE)
cdf
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE)
quantile.Distribution
rand(n, simplify = TRUE)
rand
mean()
mean.Distribution
variance()
variance
stdev()
stdev
prec()
prec
cor()
cor
skewness()
skewness
kurtosis(excess = TRUE)
kurtosis
entropy(base = 2)
entropy
mgf(t)
mgf
cf(t)
cf
pgf(z)
pgf
median()
median.Distribution
iqr()
iqr
mode(which = "all")
mode
Parameter Methods
parameters(id)
parameters
getParameterValue(id, error = "warn")
getParameterValue
setParameterValue(..., lst = NULL, error = "warn")
setParameterValue
Validation Methods
liesInSupport(x, all = TRUE, bound = FALSE)
liesInSupport
liesInType(x, all = TRUE, bound = FALSE)
liesInType
Representation Methods
strprint(n = 2)
strprint
print(n = 2)
print
summary(full = T)
summary.Distribution
# NOT RUN {
# Different parameterisations
Geometric$new(prob = 0.2)
Geometric$new(qprob = 0.7)
# Different forms of the distribution
Geometric$new(trials = TRUE) # Number of trials before first success
Geometric$new(trials = FALSE) # Number of failures before first success
# Use description to see which form is used
Geometric$new(trials = TRUE)$description
Geometric$new(trials = FALSE)$description
# Default is prob = 0.5 and number of failures before first success
x <- Geometric$new()
# Update parameters
# When any parameter is updated, all others are too!
x$setParameterValue(qprob = 0.2)
x$parameters()
# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)
# Statistics
x$mean()
x$variance()
summary(x)
# }
Run the code above in your browser using DataLab