Learn R Programming

distr6 (version 1.3.6)

Laplace: Laplace Distribution Class

Description

Mathematical and statistical functions for the Laplace distribution, which is commonly used in signal processing and finance.

Value

Returns an R6 object inheriting from class SDistribution.

Constructor

Laplace$new(mean = 0, scale = 1, var = NULL, decorators = NULL, verbose = FALSE)

Constructor Arguments

Argument Type Details
mean numeric location parameter.
scale numeric scale parameter.
var numeric alternate scale parameter.

decorators Decorator decorators to add functionality. See details.

Constructor Details

The Laplace distribution is parameterised with mean as a numeric and either scale or var as positive numerics. These are related via, $$var = 2 * scale^2$$ If var is given then scale is ignored.

Public Variables

Variable Return
name Name of distribution.
short_name Id of distribution.
description Brief description of distribution.

Public Methods

Accessor Methods Link
decorators decorators
traits traits
valueSupport valueSupport
variateForm variateForm
type type
properties properties
support support
symmetry symmetry
sup sup
inf inf
dmax dmax
dmin dmin
skewnessType skewnessType
kurtosisType kurtosisType

Statistical Methods Link pdf(x1, ..., log = FALSE, simplify = TRUE) pdf cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) cdf quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) quantile.Distribution rand(n, simplify = TRUE) rand mean() mean.Distribution variance() variance stdev() stdev prec() prec cor() cor skewness() skewness kurtosis(excess = TRUE) kurtosis entropy(base = 2) entropy mgf(t) mgf cf(t) cf pgf(z) pgf median() median.Distribution iqr() iqr mode(which = "all") mode

Parameter Methods Link parameters(id) parameters getParameterValue(id, error = "warn") getParameterValue setParameterValue(..., lst = NULL, error = "warn") setParameterValue

Validation Methods Link liesInSupport(x, all = TRUE, bound = FALSE) liesInSupport liesInType(x, all = TRUE, bound = FALSE) liesInType

Representation Methods Link strprint(n = 2) strprint print(n = 2) print summary(full = T) summary.Distribution

Details

The Laplace distribution parameterised with mean, \(\mu\), and scale, \(\beta\), is defined by the pdf, $$f(x) = exp(-|x-\mu|/\beta)/(2\beta)$$ for \(\mu \epsilon R\) and \(\beta > 0\).

The distribution is supported on the Reals.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

See Also

listDistributions for all available distributions.

Examples

Run this code
# NOT RUN {
Laplace$new(scale = 2)
Laplace$new(var = 4)

x = Laplace$new(verbose = TRUE) # Default is mean = 0, scale = 1

# Update parameters
# When any parameter is updated, all others are too!
x$setParameterValue(var = 2)
x$parameters()

# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)

# Statistics
x$mean()
x$variance()

summary(x)

# }

Run the code above in your browser using DataLab