Statistical Methods
pdf(x1, ..., log = FALSE, simplify = TRUE) pdf cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) cdfquantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) quantile.Distribution rand(n, simplify = TRUE) rand mean() mean.Distribution variance() variance stdev() stdev prec() prec cor() cor skewness() skewness kurtosis(excess = TRUE) kurtosis entropy(base = 2) entropy mgf(t) mgf cf(t) cf pgf(z) pgf median() median.Distribution iqr() iqr mode(which = "all") mode
Parameter Methods
parameters(id) parameters getParameterValue(id, error = "warn") getParameterValue setParameterValue(..., lst = NULL, error = "warn") setParameterValue
Validation Methods
liesInSupport(x, all = TRUE, bound = FALSE) liesInSupport liesInType(x, all = TRUE, bound = FALSE) liesInType
Representation Methods
strprint(n = 2) strprint print(n = 2) print summary(full = T) summary.Distribution # NOT RUN {
# Many parameterisations are possible
Lognormal$new(var = 2, mean = 1)
Lognormal$new(meanlog = 2, preclog = 5)
# Note parameters must be on same scale (log or natural)
Lognormal$new(meanlog = 4, sd = 2)
x <- Lognormal$new(verbose = TRUE) # meanlog = 0, sdlog = 1 default
# Update parameters
# When any parameter is updated, all others are too!
x$setParameterValue(meanlog = 3)
x$parameters()
# But you can only set parameters on the same scale, the below has no effect
x$setParameterValue(sd = 3)
# But this does
x$setParameterValue(sdlog = 3)
# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)
# Statistics
x$mean()
x$variance()
summary(x)
# }
Run the code above in your browser using DataLab