Statistical Methods
pdf(x1, ..., log = FALSE, simplify = TRUE) pdf cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) cdfquantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) quantile.Distribution rand(n, simplify = TRUE) rand mean() mean.Distribution variance() variance stdev() stdev prec() prec cor() cor skewness() skewness kurtosis(excess = TRUE) kurtosis entropy(base = 2) entropy mgf(t) mgf cf(t) cf pgf(z) pgf median() median.Distribution iqr() iqr mode(which = "all") mode
Parameter Methods
parameters(id) parameters getParameterValue(id, error = "warn") getParameterValue setParameterValue(..., lst = NULL, error = "warn") setParameterValue
Validation Methods
liesInSupport(x, all = TRUE, bound = FALSE) liesInSupport liesInType(x, all = TRUE, bound = FALSE) liesInType
Representation Methods
strprint(n = 2) strprint print(n = 2) print summary(full = T) summary.Distribution # NOT RUN {
x <- Multinomial$new(size = 5, probs = c(0.1, 0.5, 0.9)) # Automatically normalised
# Update parameters
x$setParameterValue(size = 10)
# Number of categories cannot be changed after construction
x$setParameterValue(probs = c(1,2,3))
x$parameters()
# d/p/q/r
# Note the difference from R stats
x$pdf(4, 4, 2)
# This allows vectorisation:
x$pdf(c(1,4),c(2,4),c(7,2))
x$rand(4)
# Statistics
x$mean()
x$variance()
summary(x)
# }
Run the code above in your browser using DataLab