Statistical Methods
pdf(x1, ..., log = FALSE, simplify = TRUE)
pdf
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE)
cdf
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE)
quantile.Distribution
rand(n, simplify = TRUE)
rand
mean()
mean.Distribution
variance()
variance
stdev()
stdev
prec()
prec
cor()
cor
skewness()
skewness
kurtosis(excess = TRUE)
kurtosis
entropy(base = 2)
entropy
mgf(t)
mgf
cf(t)
cf
pgf(z)
pgf
median()
median.Distribution
iqr()
iqr
mode(which = "all")
mode
Parameter Methods
parameters(id)
parameters
getParameterValue(id, error = "warn")
getParameterValue
setParameterValue(..., lst = NULL, error = "warn")
setParameterValue
Validation Methods
liesInSupport(x, all = TRUE, bound = FALSE)
liesInSupport
liesInType(x, all = TRUE, bound = FALSE)
liesInType
Representation Methods
strprint(n = 2)
strprint
print(n = 2)
print
summary(full = T)
summary.Distribution
# NOT RUN {
# Different parameterisations
MultivariateNormal$new(mean = c(0,0,0), cov = matrix(c(3,-1,-1,-1,1,0,-1,0,1), byrow=TRUE,nrow=3))
MultivariateNormal$new(mean = c(0,0,0), cov = c(3,-1,-1,-1,1,0,-1,0,1)) # Equivalently
MultivariateNormal$new(mean = c(0,0,0), prec = c(3,-1,-1,-1,1,0,-1,0,1))
# Default is bivariate standard normal
x <- MultivariateNormal$new()
# Update parameters
x$setParameterValue(mean = c(1, 2))
# When any parameter is updated, all others are too!
x$setParameterValue(prec = c(1,0,0,1))
x$parameters()
# d/p/q/r
# Note the difference from R stats
x$pdf(1, 2)
# This allows vectorisation:
x$pdf(1:3, 2:4)
x$rand(4)
# Statistics
x$mean()
x$variance()
summary(x)
# }
Run the code above in your browser using DataLab