Mathematical and statistical functions for the NormalKernel kernel defined by the pdf, $$f(x) = exp(-x^2/2)/\sqrt{2\pi}$$ over the support \(x \in \R\).
Returns an R6 object inheriting from class Kernel.
NormalKernel$new(decorators = NULL)
Argument | Type | Details |
decorators |
Decorator | decorators to add functionality. |
Variable | Return |
name |
Name of distribution. |
short_name |
Id of distribution. |
description |
Brief description of distribution. |
Accessor Methods | Link |
decorators |
decorators |
traits |
traits |
valueSupport |
valueSupport |
variateForm |
variateForm |
type |
type |
properties |
properties |
support |
support |
symmetry |
symmetry |
sup |
sup |
inf |
inf |
dmax |
dmax |
dmin |
dmin |
skewnessType |
skewnessType |
kurtosisType |
kurtosisType |
d/p/q/r Methods | Link |
pdf(x1, ..., log = FALSE, simplify = TRUE) |
pdf |
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) |
cdf |
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) |
quantile.Distribution |
rand(n, simplify = TRUE) |
rand |
Statistical Methods | Link |
squared2Norm() |
squared2Norm |
prec() |
prec |
stdev() |
stdev |
mode(which = "all") |
mode |
mean() |
mean.Distribution |
median() |
median.Distribution |
iqr() |
iqr |
correlation() |
correlation |
Parameter Methods | Link |
parameters(id) |
parameters |
getParameterValue(id, error = "warn") |
getParameterValue |
setParameterValue(..., lst = NULL, error = "warn") |
setParameterValue |
Validation Methods | Link |
liesInSupport(x, all = TRUE, bound = FALSE) |
liesInSupport |
liesInType(x, all = TRUE, bound = FALSE) |
liesInType |
Representation Methods | Link |
strprint(n = 2) |
strprint |
print(n = 2) |
print |
summary(full = T) |
summary.Distribution |
We use the erf
and erfinv
error and inverse error functions from the Pracma
package.