Learn R Programming

distr6 (version 1.3.6)

StudentTNoncentral: Noncentral Student's T Distribution Class

Description

Mathematical and statistical functions for the Noncentral Student's T distribution, which is commonly used to estimate the mean of populations with unknown variance from a small sample size, as well as in t-testing for difference of means and regression analysis.

Value

Returns an R6 object inheriting from class SDistribution.

Constructor

StudentTNoncentral$new(df = 1, location = 0, decorators = NULL, verbose = FALSE)

Constructor Arguments

Argument Type Details
df numeric degrees of freedom.
location numeric location (ncp in rstats).

decorators Decorator decorators to add functionality. See details.

Constructor Details

The Noncentral Student's T distribution is parameterised with df as positive numeric and location as real numeric.

Public Variables

Variable Return
name Name of distribution.
short_name Id of distribution.
description Brief description of distribution.

Public Methods

Accessor Methods Link
decorators decorators
traits traits
valueSupport valueSupport
variateForm variateForm
type type
properties properties
support support
symmetry symmetry
sup sup
inf inf
dmax dmax
dmin dmin
skewnessType skewnessType
kurtosisType kurtosisType

Statistical Methods Link pdf(x1, ..., log = FALSE, simplify = TRUE) pdf cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) cdf quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) quantile.Distribution rand(n, simplify = TRUE) rand mean() mean.Distribution variance() variance stdev() stdev prec() prec cor() cor skewness() skewness kurtosis(excess = TRUE) kurtosis entropy(base = 2) entropy mgf(t) mgf cf(t) cf pgf(z) pgf median() median.Distribution iqr() iqr mode(which = "all") mode

Parameter Methods Link parameters(id) parameters getParameterValue(id, error = "warn") getParameterValue setParameterValue(..., lst = NULL, error = "warn") setParameterValue

Validation Methods Link liesInSupport(x, all = TRUE, bound = FALSE) liesInSupport liesInType(x, all = TRUE, bound = FALSE) liesInType

Representation Methods Link strprint(n = 2) strprint print(n = 2) print summary(full = T) summary.Distribution

Details

The Noncentral Student's T distribution parameterised with degrees of freedom, \(\nu\) and location, \(\lambda\), is defined by the pdf, $$f(x) = (\nu^{\nu/2}exp(-(\nu\lambda^2)/(2(x^2+\nu)))/(\sqrt{\pi} \Gamma(\nu/2) 2^{(\nu-1)/2} (x^2+\nu)^{(\nu+1)/2}))\int_{0}^{\infty} y^\nu exp(-1/2(y-x\lambda/\sqrt{x^2+\nu})^2)$$ for \(\nu > 0\), \(\lambda \epsilon R\).

The distribution is supported on the Reals.

skewness, kurtosis, mode, entropy, pgf, mgf and cf are omitted as no closed form analytic expression could be found, decorate with CoreStatistics for numerical results.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

See Also

listDistributions for all available distributions. Normal for the Normal distribution, StudentT for the central Student's T distribution. CoreStatistics for numerical results.

Examples

Run this code
# NOT RUN {
x = StudentTNoncentral$new(df = 2, location = 3)

# Update parameters
x$setParameterValue(df = 3)
x$parameters()

# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)

# Statistics
x$mean()
x$variance()

summary(x)

# }

Run the code above in your browser using DataLab