Learn R Programming

distr6 (version 1.3.6)

Triangular: Triangular Distribution Class

Description

Mathematical and statistical functions for the Triangular distribution, which is commonly used to model population data where only the minimum, mode and maximum are known (or can be reliably estimated), also to model the sum of standard uniform distributions.

Value

Returns an R6 object inheriting from class SDistribution.

Constructor

Triangular$new(lower = 0, upper = 1, mode = 0.5, symmetric = FALSE, decorators = NULL, verbose = FALSE)

Constructor Arguments

Argument Type Details
lower numeric lower limit.
upper numeric upper limit.
mode numeric mode.
symmetric logical see details.

decorators Decorator decorators to add functionality. See details.

Constructor Details

The Triangular distribution is parameterised with lower, upper and mode as numerics. If symmetric = TRUE then the mode parameter is determined automatically and is defined by $$mode = (lower + upper) /2$$ this cannot be changed after construction. If symmetric = FALSE (default) then mode can be updated after construction.

Public Variables

Variable Return
name Name of distribution.
short_name Id of distribution.
description Brief description of distribution.

Public Methods

Accessor Methods Link
decorators decorators
traits traits
valueSupport valueSupport
variateForm variateForm
type type
properties properties
support support
symmetry symmetry
sup sup
inf inf
dmax dmax
dmin dmin
skewnessType skewnessType
kurtosisType kurtosisType

Statistical Methods Link pdf(x1, ..., log = FALSE, simplify = TRUE) pdf cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) cdf quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) quantile.Distribution rand(n, simplify = TRUE) rand mean() mean.Distribution variance() variance stdev() stdev prec() prec cor() cor skewness() skewness kurtosis(excess = TRUE) kurtosis entropy(base = 2) entropy mgf(t) mgf cf(t) cf pgf(z) pgf median() median.Distribution iqr() iqr mode(which = "all") mode

Parameter Methods Link parameters(id) parameters getParameterValue(id, error = "warn") getParameterValue setParameterValue(..., lst = NULL, error = "warn") setParameterValue

Validation Methods Link liesInSupport(x, all = TRUE, bound = FALSE) liesInSupport liesInType(x, all = TRUE, bound = FALSE) liesInType

Representation Methods Link strprint(n = 2) strprint print(n = 2) print summary(full = T) summary.Distribution

Details

The Triangular distribution parameterised with lower limit, \(a\), upper limit, \(b\), and mode, \(c\), is defined by the pdf, \(f(x) = 0, x < a\) \(f(x) = 2(x-a)/((b-a)(c-a)), a \le x < c\) \(f(x) = 2/(b-a), x = c\) \(f(x) = 2(b-x)/((b-a)(b-c)), c < x \le b\) \(f(x) = 0, x > b\) for \(a,b,c \ \in \ R\), \(a \le c \le b\).

The distribution is supported on \([a, b]\).

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

See Also

listDistributions for all available distributions. Uniform for the Uniform distribution.

Examples

Run this code
# NOT RUN {
Triangular$new(lower = 2, upper = 5, symmetric = TRUE)
Triangular$new(lower = 2, upper = 5, symmetric = FALSE) # Note mode defaults to a symmetric shape
Triangular$new(lower = 2, upper = 5, mode = 4)

# You can view the type of Triangular distribution with $description
Triangular$new(lower = 2, upper = 5, symmetric = TRUE)$description
Triangular$new(lower = 2, upper = 5, symmetric = FALSE)$description

x = Triangular$new(lower = -1, upper = 1)

# Update parameters
x$setParameterValue(lower = 2, upper = 7)
x$parameters()

# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)

# Statistics
x$mean()
x$variance()

summary(x)

# }

Run the code above in your browser using DataLab