Learn R Programming

distr6 (version 1.3.6)

WeightedDiscrete: WeightedDiscrete Distribution Class

Description

Mathematical and statistical functions for the WeightedDiscrete distribution, which is commonly used in empirical estimators such as Kaplan-Meier.

Value

Returns an R6 object inheriting from class SDistribution.

Constructor

WeightedDiscrete$new(data, decorators = NULL, verbose = FALSE)

Constructor Arguments

Argument Type Details
data data.frame matrix-style object of observations and probabilities. See details.

decorators Decorator decorators to add functionality. See details.

Constructor Details

The WeightedDiscrete distribution is parameterised with an object that can be coerced to a data.frame containing columns 'sample' and at least one of 'pdf' and 'cdf', see examples.

Public Variables

Variable Return
name Name of distribution.
short_name Id of distribution.
description Brief description of distribution.

Public Methods

Accessor Methods Link
decorators decorators
traits traits
valueSupport valueSupport
variateForm variateForm
type type
properties properties
support support
symmetry symmetry
sup sup
inf inf
dmax dmax
dmin dmin
skewnessType skewnessType
kurtosisType kurtosisType

Statistical Methods Link pdf(x1, ..., log = FALSE, simplify = TRUE) pdf cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) cdf quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) quantile.Distribution rand(n, simplify = TRUE) rand mean() mean.Distribution variance() variance stdev() stdev prec() prec cor() cor skewness() skewness kurtosis(excess = TRUE) kurtosis entropy(base = 2) entropy mgf(t) mgf cf(t) cf pgf(z) pgf median() median.Distribution iqr() iqr mode(which = "all") mode

Parameter Methods Link parameters(id) parameters getParameterValue(id, error = "warn") getParameterValue setParameterValue(..., lst = NULL, error = "warn") setParameterValue

Validation Methods Link liesInSupport(x, all = TRUE, bound = FALSE) liesInSupport liesInType(x, all = TRUE, bound = FALSE) liesInType

Representation Methods Link strprint(n = 2) strprint print(n = 2) print summary(full = T) summary.Distribution

Details

The WeightedDiscrete distribution is defined by the pmf, $$f(x_i) = p_i$$ for \(p_i, i = 1,\ldots,k; \sum p_i = 1\).

The distribution is supported on \(x_1,...,x_k\).

Sampling from this distribution is performed with the sample function with the elements given as the x values and the pdf as the probabilities. The cdf and quantile assumes that the elements are supplied in an indexed order (otherwise the results are meaningless).

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

See Also

listDistributions for all available distributions. sample for the sampling function and Empirical for the closely related Empirical distribution.

Examples

Run this code
# NOT RUN {
x = WeightedDiscrete$new(data = data.frame(x = 1:3, pdf = c(1/5, 3/5, 1/5)))
WeightedDiscrete$new(data = data.frame(x = 1:3, cdf = c(1/5, 4/5, 1))) # equivalently

# d/p/q/r
x$pdf(1:5)
x$cdf(1:5) # Assumes ordered in construction
x$quantile(0.42) # Assumes ordered in construction
x$rand(10)

# Statistics
x$mean()
x$variance()

summary(x)

# }

Run the code above in your browser using DataLab