Learn R Programming

distr6 (version 1.3.7)

ArrayDistribution-deprecated: Product Array Distribution

Description

A special case product distribution where each independent distribution is the same Distribution class but not necessarily with the same parameters.

Value

Returns an R6 object of class ArrayDistribution.

Constructor

ArrayDistribution$new(distribution, paramList, name = NULL, short_name = NULL, description = NULL)

Constructor Arguments

Argument Type Details
distribution distribution Distribution to wrap.
paramList list List of parameters, see example.
name list Optional new name for distribution.
short_name list Optional new short_name for distribution.
description list Optional new description for distribution.

Public Variables

Variable Return
name Name of distribution.
short_name Id of distribution.
description Brief description of distribution.

Public Methods

Accessor Methods Link
wrappedModels(model = NULL) wrappedModels
decorators decorators
traits traits
valueSupport valueSupport
variateForm variateForm
type type
properties properties
support support
symmetry symmetry
sup sup
inf inf
dmax dmax
dmin dmin
skewnessType skewnessType
kurtosisType kurtosisType
d/p/q/r Methods Link
pdf(x1, ..., log = FALSE, simplify = TRUE) pdf
cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) cdf
quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) quantile.Distribution
rand(n, simplify = TRUE) rand
Statistical Methods Link
prec() prec
stdev() stdev
median() median.Distribution
iqr() iqr
cor() cor
Parameter Methods Link
parameters(id) parameters
getParameterValue(id, error = "warn") getParameterValue
setParameterValue(..., lst = NULL, error = "warn") setParameterValue
Validation Methods Link
liesInSupport(x, all = TRUE, bound = FALSE) liesInSupport
liesInType(x, all = TRUE, bound = FALSE) liesInType
Representation Methods Link
strprint(n = 2) strprint
print(n = 2) print
summary(full = T) summary.Distribution

Details

Exploits the following relationships of independent distributions $$f_A(X1 = x1,...,XN = xN) = f_{X1}(x1) * ... * f_{XN}(xn)$$ $$F_A(X1 = x1,...,XN = xN) = F_{X1}(x1) * ... * F_{XN}(xn)$$ where \(f_A\)/\(F_A\) is the pdf/cdf of the array distribution \(A\) and \(X1,...,XN\) are independent distributions.

See Also

distr6-deprecated

Examples

Run this code
# NOT RUN {
a = ArrayDistribution$new(Binomial,
              list(list(prob = 0.1, size = 2),
                   list(prob = 0.6, size = 4),
                   list(prob = 0.2, size = 6)))
a$pdf(x1=1,x2=2,x3=3)
a$cdf(x1=1,x2=2,x3=3)
a$rand(10)

# }

Run the code above in your browser using DataLab