Learn R Programming

distr6 (version 1.5.2)

FDistribution: 'F' Distribution Class

Description

Mathematical and statistical functions for the 'F' distribution, which is commonly used in ANOVA testing and is the ratio of scaled Chi-Squared distributions..

Arguments

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Positive Reals.

Default Parameterisation

F(df1 = 1, df2 = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> FDistribution

Public fields

name

Full name of distribution.

short_name

Short name of distribution for printing.

description

Brief description of the distribution.

packages

Packages required to be installed in order to construct the distribution.

Methods

Public methods

Method new()

Creates a new instance of this R6 class.

Usage

FDistribution$new(df1 = NULL, df2 = NULL, decorators = NULL)

Arguments

df1

(numeric(1)) First degree of freedom of the distribution defined on the positive Reals.

df2

(numeric(1)) Second degree of freedom of the distribution defined on the positive Reals.

decorators

(character()) Decorators to add to the distribution during construction.

Method mean()

The arithmetic mean of a (discrete) probability distribution X is the expectation $$E_X(X) = \sum p_X(x)*x$$ with an integration analogue for continuous distributions.

Usage

FDistribution$mean(...)

Arguments

...

Unused.

Method mode()

The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage

FDistribution$mode(which = "all")

Arguments

which

(character(1) | numeric(1) Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method variance()

The variance of a distribution is defined by the formula $$var_X = E[X^2] - E[X]^2$$ where \(E_X\) is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage

FDistribution$variance(...)

Arguments

...

Unused.

Method skewness()

The skewness of a distribution is defined by the third standardised moment, $$sk_X = E_X[\frac{x - \mu}{\sigma}^3]$$ where \(E_X\) is the expectation of distribution X, \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution.

Usage

FDistribution$skewness(...)

Arguments

...

Unused.

Method kurtosis()

The kurtosis of a distribution is defined by the fourth standardised moment, $$k_X = E_X[\frac{x - \mu}{\sigma}^4]$$ where \(E_X\) is the expectation of distribution X, \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage

FDistribution$kurtosis(excess = TRUE, ...)

Arguments

excess

(logical(1)) If TRUE (default) excess kurtosis returned.

...

Unused.

Method entropy()

The entropy of a (discrete) distribution is defined by $$- \sum (f_X)log(f_X)$$ where \(f_X\) is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage

FDistribution$entropy(base = 2, ...)

Arguments

base

(integer(1)) Base of the entropy logarithm, default = 2 (Shannon entropy)

...

Unused.

Method mgf()

The moment generating function is defined by $$mgf_X(t) = E_X[exp(xt)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.

Usage

FDistribution$mgf(t, ...)

Arguments

t

(integer(1)) t integer to evaluate function at.

...

Unused.

Method pgf()

The probability generating function is defined by $$pgf_X(z) = E_X[exp(z^x)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.

Usage

FDistribution$pgf(z, ...)

Arguments

z

(integer(1)) z integer to evaluate probability generating function at.

...

Unused.

Method setParameterValue()

Sets the value(s) of the given parameter(s).

Usage

FDistribution$setParameterValue(
  ...,
  lst = NULL,
  error = "warn",
  resolveConflicts = FALSE
)

Arguments

...

ANY Named arguments of parameters to set values for. See examples.

lst

(list(1)) Alternative argument for passing parameters. List names should be parameter names and list values are the new values to set.

error

(character(1)) If "warn" then returns a warning on error, otherwise breaks if "stop".

resolveConflicts

(logical(1)) If FALSE (default) throws error if conflicting parameterisations are provided, otherwise automatically resolves them by removing all conflicting parameters.

Method clone()

The objects of this class are cloneable with this method.

Usage

FDistribution$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Details

The 'F' distribution parameterised with two degrees of freedom parameters, \(\mu, \nu\), is defined by the pdf, $$f(x) = \Gamma((\mu + \nu)/2) / (\Gamma(\mu/2) \Gamma(\nu/2)) (\mu/\nu)^{\mu/2} x^{\mu/2 - 1} (1 + (\mu/\nu) x)^{-(\mu + \nu)/2}$$ for \(\mu, \nu > 0\).

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete