Learn R Programming

distr6 (version 1.6.9)

Arcsine: Arcsine Distribution Class

Description

Mathematical and statistical functions for the Arcsine distribution, which is commonly used in the study of random walks and as a special case of the Beta distribution.

Arguments

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on \([a, b]\).

Default Parameterisation

Arc(lower = 0, upper = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Arcsine

Public fields

name

Full name of distribution.

short_name

Short name of distribution for printing.

description

Brief description of the distribution.

Active bindings

properties

Returns distribution properties, including skewness type and symmetry.

Methods

Public methods

Method new()

Creates a new instance of this R6 class.

Usage

Arcsine$new(lower = NULL, upper = NULL, decorators = NULL)

Arguments

lower

(numeric(1)) Lower limit of the Distribution, defined on the Reals.

upper

(numeric(1)) Upper limit of the Distribution, defined on the Reals.

decorators

(character()) Decorators to add to the distribution during construction.

Method mean()

The arithmetic mean of a (discrete) probability distribution X is the expectation $$E_X(X) = \sum p_X(x)*x$$ with an integration analogue for continuous distributions.

Usage

Arcsine$mean(...)

Arguments

...

Unused.

Method mode()

The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage

Arcsine$mode(which = "all")

Arguments

which

(character(1) | numeric(1) Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method variance()

The variance of a distribution is defined by the formula $$var_X = E[X^2] - E[X]^2$$ where \(E_X\) is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage

Arcsine$variance(...)

Arguments

...

Unused.

Method skewness()

The skewness of a distribution is defined by the third standardised moment, $$sk_X = E_X[\frac{x - \mu}{\sigma}^3]$$ where \(E_X\) is the expectation of distribution X, \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution.

Usage

Arcsine$skewness(...)

Arguments

...

Unused.

Method kurtosis()

The kurtosis of a distribution is defined by the fourth standardised moment, $$k_X = E_X[\frac{x - \mu}{\sigma}^4]$$ where \(E_X\) is the expectation of distribution X, \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage

Arcsine$kurtosis(excess = TRUE, ...)

Arguments

excess

(logical(1)) If TRUE (default) excess kurtosis returned.

...

Unused.

Method entropy()

The entropy of a (discrete) distribution is defined by $$- \sum (f_X)log(f_X)$$ where \(f_X\) is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage

Arcsine$entropy(base = 2, ...)

Arguments

base

(integer(1)) Base of the entropy logarithm, default = 2 (Shannon entropy)

...

Unused.

Method pgf()

The probability generating function is defined by $$pgf_X(z) = E_X[exp(z^x)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.

Usage

Arcsine$pgf(z, ...)

Arguments

z

(integer(1)) z integer to evaluate probability generating function at.

...

Unused.

Method clone()

The objects of this class are cloneable with this method.

Usage

Arcsine$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Details

The Arcsine distribution parameterised with lower, \(a\), and upper, \(b\), limits is defined by the pdf, $$f(x) = 1/(\pi\sqrt{(x-a)(b-x))}$$ for \(-\infty < a \le b < \infty\).

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

See Also

Other continuous distributions: BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, Matdist, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete