Mathematical and statistical functions for the Frechet distribution, which is commonly used as a special case of the Generalised Extreme Value distribution.
Returns an R6 object inheriting from class SDistribution.
The distribution is supported on \(x > \gamma\).
Frec(shape = 1, scale = 1, minimum = 0)
N/A
Also known as the Inverse Weibull distribution.
distr6::Distribution
-> distr6::SDistribution
-> Frechet
name
Full name of distribution.
short_name
Short name of distribution for printing.
description
Brief description of the distribution.
packages
Packages required to be installed in order to construct the distribution.
properties
Returns distribution properties, including skewness type and symmetry.
new()
Creates a new instance of this R6 class.
Frechet$new(shape = NULL, scale = NULL, minimum = NULL, decorators = NULL)
shape
(numeric(1))
Shape parameter, defined on the positive Reals.
scale
(numeric(1))
Scale parameter, defined on the positive Reals.
minimum
(numeric(1))
Minimum of the distribution, defined on the Reals.
decorators
(character())
Decorators to add to the distribution during construction.
mean()
The arithmetic mean of a (discrete) probability distribution X is the expectation $$E_X(X) = \sum p_X(x)*x$$ with an integration analogue for continuous distributions.
Frechet$mean(...)
...
Unused.
mode()
The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).
Frechet$mode(which = "all")
which
(character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all"
returns all modes, otherwise specifies
which mode to return.
median()
Returns the median of the distribution. If an analytical expression is available
returns distribution median, otherwise if symmetric returns self$mean
, otherwise
returns self$quantile(0.5)
.
Frechet$median()
variance()
The variance of a distribution is defined by the formula $$var_X = E[X^2] - E[X]^2$$ where \(E_X\) is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.
Frechet$variance(...)
...
Unused.
skewness()
The skewness of a distribution is defined by the third standardised moment, $$sk_X = E_X[\frac{x - \mu}{\sigma}^3]$$ where \(E_X\) is the expectation of distribution X, \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution.
Frechet$skewness(...)
...
Unused.
kurtosis()
The kurtosis of a distribution is defined by the fourth standardised moment, $$k_X = E_X[\frac{x - \mu}{\sigma}^4]$$ where \(E_X\) is the expectation of distribution X, \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.
Frechet$kurtosis(excess = TRUE, ...)
excess
(logical(1))
If TRUE
(default) excess kurtosis returned.
...
Unused.
entropy()
The entropy of a (discrete) distribution is defined by $$- \sum (f_X)log(f_X)$$ where \(f_X\) is the pdf of distribution X, with an integration analogue for continuous distributions.
Frechet$entropy(base = 2, ...)
base
(integer(1))
Base of the entropy logarithm, default = 2 (Shannon entropy)
...
Unused.
pgf()
The probability generating function is defined by $$pgf_X(z) = E_X[exp(z^x)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.
Frechet$pgf(z, ...)
z
(integer(1))
z integer to evaluate probability generating function at.
...
Unused.
clone()
The objects of this class are cloneable with this method.
Frechet$clone(deep = FALSE)
deep
Whether to make a deep clone.
The Frechet distribution parameterised with shape, \(\alpha\), scale, \(\beta\), and minimum, \(\gamma\), is defined by the pdf, $$f(x) = (\alpha/\beta)((x-\gamma)/\beta)^{-1-\alpha}exp(-(x-\gamma)/\beta)^{-\alpha}$$ for \(\alpha, \beta \epsilon R^+\) and \(\gamma \epsilon R\).
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
Other continuous distributions:
Arcsine
,
BetaNoncentral
,
Beta
,
Cauchy
,
ChiSquaredNoncentral
,
ChiSquared
,
Dirichlet
,
Erlang
,
Exponential
,
FDistributionNoncentral
,
FDistribution
,
Gamma
,
Gompertz
,
Gumbel
,
InverseGamma
,
Laplace
,
Logistic
,
Loglogistic
,
Lognormal
,
MultivariateNormal
,
Normal
,
Pareto
,
Poisson
,
Rayleigh
,
ShiftedLoglogistic
,
StudentTNoncentral
,
StudentT
,
Triangular
,
Uniform
,
Wald
,
Weibull
Other univariate distributions:
Arcsine
,
Bernoulli
,
BetaNoncentral
,
Beta
,
Binomial
,
Categorical
,
Cauchy
,
ChiSquaredNoncentral
,
ChiSquared
,
Degenerate
,
DiscreteUniform
,
Empirical
,
Erlang
,
Exponential
,
FDistributionNoncentral
,
FDistribution
,
Gamma
,
Geometric
,
Gompertz
,
Gumbel
,
Hypergeometric
,
InverseGamma
,
Laplace
,
Logarithmic
,
Logistic
,
Loglogistic
,
Lognormal
,
Matdist
,
NegativeBinomial
,
Normal
,
Pareto
,
Poisson
,
Rayleigh
,
ShiftedLoglogistic
,
StudentTNoncentral
,
StudentT
,
Triangular
,
Uniform
,
Wald
,
Weibull
,
WeightedDiscrete