Learn R Programming

distr6 (version 1.6.9)

Geometric: Geometric Distribution Class

Description

Mathematical and statistical functions for the Geometric distribution, which is commonly used to model the number of trials (or number of failures) before the first success.

Arguments

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Naturals (zero is included if modelling number of failures before success).

Default Parameterisation

Geom(prob = 0.5, trials = FALSE)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Geometric

Public fields

name

Full name of distribution.

short_name

Short name of distribution for printing.

description

Brief description of the distribution.

packages

Packages required to be installed in order to construct the distribution.

Methods

Public methods

Method new()

Creates a new instance of this R6 class.

Usage

Geometric$new(prob = NULL, qprob = NULL, trials = NULL, decorators = NULL)

Arguments

prob

(numeric(1)) Probability of success.

qprob

(numeric(1)) Probability of failure. If provided then prob is ignored. qprob = 1 - prob.

trials

(logical(1)) If TRUE then the distribution models the number of trials, \(x\), before the first success. Otherwise the distribution calculates the probability of \(y\) failures before the first success. Mathematically these are related by \(Y = X - 1\).

decorators

(character()) Decorators to add to the distribution during construction.

Method mean()

The arithmetic mean of a (discrete) probability distribution X is the expectation $$E_X(X) = \sum p_X(x)*x$$ with an integration analogue for continuous distributions.

Usage

Geometric$mean(...)

Arguments

...

Unused.

Method mode()

The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage

Geometric$mode(which = "all")

Arguments

which

(character(1) | numeric(1) Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.

Method variance()

The variance of a distribution is defined by the formula $$var_X = E[X^2] - E[X]^2$$ where \(E_X\) is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage

Geometric$variance(...)

Arguments

...

Unused.

Method skewness()

The skewness of a distribution is defined by the third standardised moment, $$sk_X = E_X[\frac{x - \mu}{\sigma}^3]$$ where \(E_X\) is the expectation of distribution X, \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution.

Usage

Geometric$skewness(...)

Arguments

...

Unused.

Method kurtosis()

The kurtosis of a distribution is defined by the fourth standardised moment, $$k_X = E_X[\frac{x - \mu}{\sigma}^4]$$ where \(E_X\) is the expectation of distribution X, \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage

Geometric$kurtosis(excess = TRUE, ...)

Arguments

excess

(logical(1)) If TRUE (default) excess kurtosis returned.

...

Unused.

Method entropy()

The entropy of a (discrete) distribution is defined by $$- \sum (f_X)log(f_X)$$ where \(f_X\) is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage

Geometric$entropy(base = 2, ...)

Arguments

base

(integer(1)) Base of the entropy logarithm, default = 2 (Shannon entropy)

...

Unused.

Method mgf()

The moment generating function is defined by $$mgf_X(t) = E_X[exp(xt)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.

Usage

Geometric$mgf(t, ...)

Arguments

t

(integer(1)) t integer to evaluate function at.

...

Unused.

Method cf()

The characteristic function is defined by $$cf_X(t) = E_X[exp(xti)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.

Usage

Geometric$cf(t, ...)

Arguments

t

(integer(1)) t integer to evaluate function at.

...

Unused.

Method pgf()

The probability generating function is defined by $$pgf_X(z) = E_X[exp(z^x)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.

Usage

Geometric$pgf(z, ...)

Arguments

z

(integer(1)) z integer to evaluate probability generating function at.

...

Unused.

Method clone()

The objects of this class are cloneable with this method.

Usage

Geometric$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Details

The Geometric distribution parameterised with probability of success, \(p\), is defined by the pmf, $$f(x) = (1 - p)^{k-1}p$$ for probability \(p\).

The Geometric distribution is used to either model the number of trials (trials = TRUE) or number of failures (trials = FALSE) before the first success.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

See Also

Other discrete distributions: Bernoulli, Binomial, Categorical, Degenerate, DiscreteUniform, EmpiricalMV, Empirical, Hypergeometric, Logarithmic, Matdist, Multinomial, NegativeBinomial, WeightedDiscrete

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, Matdist, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete