Learn R Programming

distrMod (version 2.9.4)

internals_for_distrMod: Internal functions of package distrMod

Description

These functions are used internally by package ``distrMod''.

Usage

.inArgs(arg, fct)
.isUnitMatrix(m)
.csimpsum(fx)
.validTrafo(trafo, dimension, dimensionwithN)

.CvMMDCovariance(L2Fam, param, mu = distribution(L2Fam), withplot = FALSE, withpreIC = FALSE, N = 1021, rel.tol=.Machine$double.eps^0.3, TruncQuantile = getdistrOption("TruncQuantile"), IQR.fac = 15, ..., diagnostic = FALSE) .oldCvMMDCovariance(L2Fam, param, mu = distribution(L2Fam), withplot = FALSE, withpreIC = FALSE, N = getdistrOption("DefaultNrGridPoints")+1, rel.tol=.Machine$double.eps^0.3, TruncQuantile = getdistrOption("TruncQuantile"), IQR.fac = 15, ...) .CvMMDCovarianceWithMux(L2Fam, param, withplot = FALSE, withpreIC = FALSE, N = 1021, rel.tol=.Machine$double.eps^0.3, TruncQuantile = getdistrOption("TruncQuantile"), IQR.fac = 15, ..., x=NULL)

.show.with.sd(est, s) .getLogDeriv(distr, lowerTruncQuantile = getdistrExOption("ElowerTruncQuantile"), upperTruncQuantile = getdistrExOption("EupperTruncQuantile"), IQR.fac = getdistrExOption("IQR.fac")) .deleteDim(x)

Value

.getLogderiv

a function in one argument x --- the negative logarithmic derivative of the density

.inArgs

logical (length 1)

.csimpsum

numeric (of length half the input length)

.isUnitMatrix

logical (length 1)

.validTrafo

logical (length 1)

.CvMMDCovariance

corresponding as. [co]variance of the corresponding Minimum CvM estimator or list withcomponents preIC and var ---see above

.show.with.sd

invisible()

.deleteDim

vector x without dim attribute

Arguments

arg

a formal argument as character

fct

a function

m

a matrix

est

an estimator; usually a vector

s

a standard deviation

trafo

an object of class MatrixorFunction

dimension

a numeric --- length of main part of the parameter

dimensionwithN

a numeric --- length of main and nuisance part of the parameter

L2Fam

an object of class L2ParamFamily --- for which we want to determine the IC resp. the as. [co]variance of the corresponding Minimum CvM estimator

param

an object of class ParamFamParameter, the parameter value at which we want to determine the IC resp. the as. [co]variance of the corresponding Minimum CvM estimator

mu

an object of class UnivariateDistribution: integration measure (resp. distribution) for CvM distance

rel.tol

relative tolerance for distrExIntegrate.

TruncQuantile

quantile for quantile based integration range.

lowerTruncQuantile

lower quantile for quantile based integration range.

upperTruncQuantile

upper quantile for quantile based integration range.

IQR.fac

factor for scale based integration range (i.e.; median of the distribution \(\pm\)IQR.fac\(\times\)IQR).

withplot

logical: shall we plot corresponding ICs?

withpreIC

logical: shall we return a list with components preIC and var or just var; here var is the corresponding asymptotic variance and preIC the corresponding EuclRandVarList featuring as argument Curve in ICs of package RobAStBase

N

a numeric: the number of gridpoints for constructing the \(\mu\)- resp. \(P_\theta\)-``primitive'' function

fx

a vector of function evaluations multiplied by the gridwidth

distr

an object of class AbscontDistribution

...

further argument to be passed through --- so .CvMMDCovariance can digest more arguments.

x

in deleteDim: a possibly named vector, which may have a dim attribute; in .CvMMDCovarianceWithMux: NULL (default) or the vector with observations to build integration measure \(mu\) as the empirical cdf.

diagnostic

logical; if TRUE, the return value of .CvMMDCovariance obtains an attribute "diagnostic" (usually a lengthy list) with diagnostic information on the call and on the integration, the latter inherited from the calls to distrExIntegrate and E in this function. Depending on the actually used E method, this comprises entries method ("integrate" or "GLIntegrate"), result (the complete return value of the integration method), args (the args with which the integration method was called), and time (the time to compute the integral).

Author

Peter Ruckdeschel peter.ruckdeschel@uni-oldenburg.de Matthias Kohl Matthias.Kohl@stamats.de

Details

.inArgs (borrowed from package distr) checks whether an argument arg is a formal argument of fct --- not vectorized.

.csimpsum (borrowed from package distr) produces a primitimive function out of function evaluations by means of vectorized Simpson quadrature method, returning already the function values of the prime function on a grid; it is to mimick the behaviour of cumsum.

.isUnitMatrix checks whether the argument is a unit matrix.

.validTrafo checks whether the argument is a valid transformation.

.CvMMDCovariance determines the IC resp. the as. [co]variance of the corresponding Minimum CvM estimator (numerical integration is done on quantile scale).

.oldCvMMDCovariance determines the IC resp. the as. [co]variance of the corresponding Minimum CvM estimator (numerical integration is done on the original scale). .CvMMDCovariance is a wrapper to .CvMMDCovariance which uses emp. cdf as mu.

.show.with.sd is code borrowed from print.fitdistr in package MASS by B.D. Ripley. It pretty-prints estimates with corresponding sd's below.

.getLogDeriv determines numerically the negative logarithmic derivative of the density of distribution distr; to this end uses D1ss, D2ss from Martin Maechler's package sfsmisc.

.deleteDim deletes a possible dim argument (sets it to NULL) but retains all other possible attributes, in particular a name attribute.

See Also

MLEstimator, Estimate-class, MCEstimate-class, Confint-class, ParamFamParameter-class