# NOT RUN {
# Generate data for the example
heartfailure2 <- heartfailure
heartfailure2[sample(seq(NROW(heartfailure2)), 5), "smoking"] <- NA
library(dplyr)
# Compare the all categorical variables
all_var <- compare_category(heartfailure2)
# Print compare_category class objects
all_var
# Compare the two categorical variables
two_var <- compare_category(heartfailure2, smoking, death_event)
# Print compare_category class objects
two_var
# Summary the all case : Return a invisible copy of an object.
stat <- summary(all_var)
# Summary by returned objects
stat
# component of table
stat$table
# component of chi-square test
stat$chisq
# component of chi-square test
summary(all_var, "chisq")
# component of chi-square test (first, third case)
summary(all_var, "chisq", pos = c(1, 3))
# component of relative frequency table
summary(all_var, "relative")
# component of table without missing values
summary(all_var, "table", na.rm = TRUE)
# component of table include marginal value
margin <- summary(all_var, "table", marginal = TRUE)
margin
# component of chi-square test
summary(two_var, method = "chisq")
# verbose is FALSE
summary(all_var, "chisq", verbose = FALSE)
#' # Using pipes & dplyr -------------------------
# If you want to use dplyr, set verbose to FALSE
summary(all_var, "chisq", verbose = FALSE) %>%
filter(p.value < 0.26)
# Extract component from list by index
summary(all_var, "table", na.rm = TRUE, verbose = FALSE) %>%
"[["(1)
# Extract component from list by name
summary(all_var, "table", na.rm = TRUE, verbose = FALSE) %>%
"[["("smoking vs death_event")
# }
Run the code above in your browser using DataLab