## Not run:
# set.seed(602)
# library(MASS)
# library(scatterplot3d)
#
# # generate simulated Gaussian data
# k = 100
# m <- matrix(c(1, 0.5, 1, 0.5, 2, -1, 1, -1, 3), nrow =3, byrow = T)
# x1 <- mvrnorm(k, mu = c(1, 1, 1), Sigma = m)
# x2 <- mvrnorm(k, mu = c(-1, 0, 0), Sigma = m)
# data <- rbind(x1, x2)
#
# # define similar constrains
# simi <- rbind(t(combn(1:k, 2)), t(combn((k+1):(2*k), 2)))
#
# temp <- as.data.frame(t(simi))
# tol <- as.data.frame(combn(1:(2*k), 2))
#
# # define disimilar constrains
# dism <- t(as.matrix(tol[!tol %in% simi]))
#
# # transform data using GdmDiag
# result <- GdmDiag(data, simi, dism)
# newData <- result$newData
# # plot original data
# color <- gl(2, k, labels = c("red", "blue"))
# par(mfrow = c(2, 1), mar = rep(0, 4) + 0.1)
# scatterplot3d(data, color = color, cex.symbols = 0.6,
# xlim = range(data[, 1], newData[, 1]),
# ylim = range(data[, 2], newData[, 2]),
# zlim = range(data[, 3], newData[, 3]),
# main = "Original Data")
# # plot GdmDiag transformed data
# scatterplot3d(newData, color = color, cex.symbols = 0.6,
# xlim = range(data[, 1], newData[, 1]),
# ylim = range(data[, 2], newData[, 2]),
# zlim = range(data[, 3], newData[, 3]),
# main = "Transformed Data")
# ## End(Not run)
Run the code above in your browser using DataLab