# Regular maths is translated in a very straightforward way
translate_sql(x + 1)
translate_sql(sin(x) + tan(y))
# Note that all variable names are escaped
translate_sql(like == "x")
# In ANSI SQL: "" quotes variable _names_, '' quotes strings
# Logical operators are converted to their sql equivalents
translate_sql(x < 5 & !(y >= 5))
# xor() doesn't have a direct SQL equivalent
translate_sql(xor(x, y))
# If is translated into case when
translate_sql(if (x > 5) "big" else "small")
# Infix functions are passed onto SQL with % removed
translate_sql(first %like% "Had*")
translate_sql(first %is% NULL)
translate_sql(first %in% c("John", "Roger", "Robert"))
# And be careful if you really want integers
translate_sql(x == 1)
translate_sql(x == 1L)
# If you have an already quoted object, use translate_sql_:
x <- quote(y + 1 / sin(t))
translate_sql_(list(x))
# Translation with known variables ------------------------------------------
# If the variables in the dataset are known, translate_sql will interpolate
# in literal values from the current environment
x <- 10
translate_sql(mpg > x)
translate_sql(mpg > x, vars = names(mtcars))
# By default all computations happens in sql
translate_sql(cyl == 2 + 2, vars = names(mtcars))
# Use local to force local evaluation
translate_sql(cyl == local(2 + 2), vars = names(mtcars))
# This is also needed if you call a local function:
inc <- function(x) x + 1
translate_sql(mpg > inc(x), vars = names(mtcars))
translate_sql(mpg > local(inc(x)), vars = names(mtcars))
# Windowed translation --------------------------------------------
# Known window functions automatically get OVER()
translate_sql(mpg > mean(mpg))
# Suppress this with window = FALSE
translate_sql(mpg > mean(mpg), window = FALSE)
# vars_group controls partition:
translate_sql(mpg > mean(mpg), vars_group = "cyl")
# and vars_order controls ordering for those functions that need it
translate_sql(cumsum(mpg))
translate_sql(cumsum(mpg), vars_order = "mpg")
Run the code above in your browser using DataLab