# NOT RUN {
df <- tibble(
x = sample(10, 100, rep = TRUE),
y = sample(10, 100, rep = TRUE)
)
nrow(df)
nrow(distinct(df))
nrow(distinct(df, x, y))
distinct(df, x)
distinct(df, y)
# Can choose to keep all other variables as well
distinct(df, x, .keep_all = TRUE)
distinct(df, y, .keep_all = TRUE)
# You can also use distinct on computed variables
distinct(df, diff = abs(x - y))
# The same behaviour applies for grouped data frames
# except that the grouping variables are always included
df <- tibble(
g = c(1, 1, 2, 2),
x = c(1, 1, 2, 1)
) %>% group_by(g)
df %>% distinct()
df %>% distinct(x)
# Values in list columns are compared by reference, this can lead to
# surprising results
tibble(a = as.list(c(1, 1, 2))) %>% glimpse() %>% distinct()
tibble(a = as.list(1:2)[c(1, 1, 2)]) %>% glimpse() %>% distinct()
# }
Run the code above in your browser using DataLab