# NOT RUN {
iris <- as_tibble(iris) # so it prints a little nicer
select(iris, starts_with("Petal"))
select(iris, ends_with("Width"))
# Move Species variable to the front
select(iris, Species, everything())
df <- as.data.frame(matrix(runif(100), nrow = 10))
df <- tbl_df(df[c(3, 4, 7, 1, 9, 8, 5, 2, 6, 10)])
select(df, V4:V6)
select(df, num_range("V", 4:6))
# Drop variables with -
select(iris, -starts_with("Petal"))
# The .data pronoun is available:
select(mtcars, .data$cyl)
select(mtcars, .data$mpg : .data$disp)
# However it isn't available within calls since those are evaluated
# outside of the data context. This would fail if run:
# select(mtcars, identical(.data$cyl))
# Renaming -----------------------------------------
# * select() keeps only the variables you specify
select(iris, petal_length = Petal.Length)
# * rename() keeps all variables
rename(iris, petal_length = Petal.Length)
# Unquoting ----------------------------------------
# Like all dplyr verbs, select() supports unquoting of symbols:
vars <- list(
var1 = sym("cyl"),
var2 = sym("am")
)
select(mtcars, !!!vars)
# For convenience it also supports strings and character
# vectors. This is unlike other verbs where strings would be
# ambiguous.
vars <- c(var1 = "cyl", var2 ="am")
select(mtcars, !!vars)
rename(mtcars, !!vars)
# }
Run the code above in your browser using DataLab