Learn R Programming

dprep (version 3.0.2)

chiMerge: Discretization using the Chi-Merge method

Description

This function performs supervised discretization using the Chi Merge method.

Usage

chiMerge(data, varcon, alpha = 0.1,out=c("symb","num"))

Arguments

data
The name of the dataset to be discretized
varcon
Vector of continuous variables
alpha
The significance level
out
To get the discretized data in numerical format enter "num". To get the discretized data in interval format enter "symb".

Value

discdata
A new data matrix containing the discretized features

Details

In case of datasets containing negative values apply first a range normalization to change the range of the attributes values to an interval containing positive values. The discretization process becomes slow when the number of variables increases (say for more than 100 variables).

References

Kantardzic M. (2003). Data Mining: Concepts, Models, methods, and Algorithms. John Wiley. New York.

See Also

disc.ef, disc.ew,disc.1r,disc.mentr

Examples

Run this code
#-----Discretization using the ChiMerge method
data(iris)
iris.disc=chiMerge(iris,1:4,alpha=0.05,out="num")
#-----Applying chiMerge a dataset containing negative values 
#data(ionosphere)
#normionos=rangenorm(ionosphere,"mmnorm")
#ionos.disc=chiMerge(normionos,1:32)

Run the code above in your browser using DataLab