Learn R Programming

dr (version 3.0.10)

dr.pvalue: Compute the Chi-square approximations to a weighted sum of Chi-square(1) random variables.

Description

Returns an approximate quantile for a weighted sum of independent $\chi^2(1)$ random variables.

Usage

dr.pvalue(coef,f,chi2approx=c("bx","wood"),...)
bentlerxie.pvalue(coef, f)
wood.pvalue(coef, f, tol=0.0, print=FALSE)

Arguments

coef
a vector of nonnegative weights
f
Observed value of the statistic
chi2approx
Which approximation should be used?
tol
tolerance for Wood's method.
print
Printed output for Wood's method
...
Arguments passed from dr.pvalue to wood.pvalue.

Value

Returns a data.frame with four named components:
test
The input argument f.
test.adj
For Bentler-Xie, returns $cf$; for Wood, returns NA.
df.adj
For Bentler-Xie, returns $d$; for Wood, returns NA.
pval.adj
Approximate p.value.

Details

For Bentler-Xie, we approximate $f$ by $c \chi^2(d)$ for values of $c$ and $d$ computed by the function. The Wood approximation is more complicated.

References

Peter M. Bentler and Jun Xie (2000), Corrections to test statistics in principal Hessian directions. Statistics and Probability Letters, 47, 381-389.

Wood, Andrew T. A. (1989) An $F$ approximation to the distribution of a linear combination of chi-squared variables. Communications in Statistics: Simulation and Computation, 18, 1439-1456.