## First fitting a model without random effects
model1 <- multdrc(SLOPE~DOSE, CURVE, data=PestSci,
collapse=data.frame(HERBICIDE, 1, 1, HERBICIDE))
## Then fitting the same model (the same fixed effects)
## but with random effects (assigned to d)
model2 <- mixdrc(model1, random="d~1|CURVE", data=PestSci)
compParm(model2, "e", "-")
## Fitting a model without random effects
## but with a Box-Cox transformation
model3 <- multdrc(SLOPE~DOSE, CURVE, data=PestSci,
collapse=data.frame(HERBICIDE, 1, 1, HERBICIDE), boxcox=TRUE)
## Then fitting the same model with random effects assigned to d
model4 <- mixdrc(model3, random="d~1|CURVE", data=PestSci)
compParm(model4, "e", "-")
## Fitting a model without random effects, but fixing the c parameter at 0
model5 <- multdrc(SLOPE~DOSE, CURVE, data=PestSci,
collapse=data.frame(HERBICIDE, 1, 1, HERBICIDE), boxcox=TRUE,
fct=l4(fixed=c(NA,0,NA,NA)))
## Fitting the corresponding mixed model with random effects on d
model6 <- mixdrc(model5, random="d~1|CURVE", data=PestSci)
Run the code above in your browser using DataLab