Learn R Programming

drc (version 3.0-1)

metals: Data from heavy metal mixture experiments

Description

Data are from a study of the response of the cyanobacterial self-luminescent metallothionein-based whole-cell biosensor Synechoccocus elongatus PCC 7942 pBG2120 to binary mixtures of 6 heavy metals (Zn, Cu, Cd, Ag, Co and Hg).

Usage

data("metals")

Arguments

Format

A data frame with 543 observations on the following 3 variables.

Source

Martin-Betancor, K. and Ritz, C. and Fernandez-Pinas, F. and Leganes, F. and Rodea-Palomares, I. (2015) Defining an additivity framework for mixture research in inducible whole-cell biosensors, Scientific Reports 17200.

Details

Data are from the study described by Martin-Betancor et al. (2015).

Examples

Run this code
## One example from the paper by Martin-Betancor et al (2015)

## Figure 2

## Fitting a model for "Zn"
Zn.lgau <- drm(BIF ~ conc, data = subset(metals, metal == "Zn"), 
fct = lgaussian(), bcVal = 0, bcAdd = 10)

## Plotting data and fitted curve
plot(Zn.lgau, log = "", type = "all", 
xlab = expression(paste(plain("Zn")^plain("2+"), " ", mu, "", plain("M"))))

## Calculating effective doses
ED(Zn.lgau, 50, interval = "delta")
ED(Zn.lgau, -50, interval = "delta", bound = FALSE)
ED(Zn.lgau, 99.999,interval = "delta")  # approx. for ED0

## Fitting a model for "Cu"
Cu.lgau <- drm(BIF ~ conc, data = subset(metals, metal == "Cu"), 
fct = lgaussian()) 

## Fitting a model for the mixture Cu-Zn
CuZn.lgau <- drm(BIF ~ conc, data = subset(metals, metal == "CuZn"), 
fct = lgaussian()) 

## Calculating effects needed for the FA-CI plot
CuZn.effects <- CIcompX(0.015, list(CuZn.lgau, Cu.lgau, Zn.lgau), 
c(-5, -10, -20, -30, -40, -50, -60, -70, -80, -90, -99, 99, 90, 80, 70, 60, 50, 40, 30, 20, 10))

## Reproducing the FA-cI plot shown in Figure 5d
plotFACI(CuZn.effects, "ED", ylim = c(0.8, 1.6), showPoints = TRUE)

Run the code above in your browser using DataLab