
Perform simple dimensionality reduction
dimred(x, method, ndim, ...)dimred_dm_destiny(
x,
ndim = 2,
distance_method = c("euclidean", "spearman", "cosine")
)
dimred_dm_diffusionmap(
x,
ndim = 2,
distance_method = c("pearson", "spearman", "cosine", "euclidean", "chisquared",
"hamming", "kullback", "manhattan", "maximum", "canberra", "minkowski")
)
dimred_ica(x, ndim = 3)
dimred_knn_fr(
x,
ndim = 2,
lmds_components = 10,
distance_method = c("pearson", "spearman", "cosine", "euclidean", "chisquared",
"hamming", "kullback", "manhattan", "maximum", "canberra", "minkowski"),
n_neighbors = 10
)
dimred_landmark_mds(
x,
ndim = 2,
distance_method = c("pearson", "spearman", "cosine", "euclidean", "chisquared",
"hamming", "kullback", "manhattan", "maximum", "canberra", "minkowski")
)
dimred_lle(x, ndim = 3)
dimred_mds(
x,
ndim = 2,
distance_method = c("pearson", "spearman", "cosine", "euclidean", "chisquared",
"hamming", "kullback", "manhattan", "maximum", "canberra", "minkowski")
)
dimred_mds_isomds(
x,
ndim = 2,
distance_method = c("pearson", "spearman", "cosine", "euclidean", "chisquared",
"hamming", "kullback", "manhattan", "maximum", "canberra", "minkowski")
)
dimred_mds_sammon(
x,
ndim = 2,
distance_method = c("pearson", "spearman", "cosine", "euclidean", "chisquared",
"hamming", "kullback", "manhattan", "maximum", "canberra", "minkowski")
)
dimred_mds_smacof(
x,
ndim = 2,
distance_method = c("pearson", "spearman", "cosine", "euclidean", "chisquared",
"hamming", "kullback", "manhattan", "maximum", "canberra", "minkowski")
)
dimred_pca(x, ndim = 2)
list_dimred_methods()
Log transformed expression data, with rows as cells and columns as features
The name of the dimensionality reduction method to use
The number of dimensions
Any arguments to be passed to the dimensionality reduction method
The name of the distance metric, see dynutils::calculate_distance
The number of lmds components to use. If NULL, LMDS will not be performed first. If this is a matrix, it is assumed it is a dimred for x.
The size of local neighborhood (in terms of number of neighboring sample points).
# NOT RUN {
library(Matrix)
x <- abs(Matrix::rsparsematrix(100, 100, .5))
dimred(x, "pca", ndim = 3)
dimred(x, "ica", ndim = 3)
if (interactive()) {
dimred_dm_destiny(x)
dimred_dm_diffusionmap(x)
dimred_ica(x)
dimred_landmark_mds(x)
dimred_lle(x)
dimred_mds(x)
dimred_mds_isomds(x)
dimred_mds_sammon(x)
dimred_mds_smacof(x)
dimred_pca(x)
dimred_tsne(x)
dimred_umap(x)
}
# }
Run the code above in your browser using DataLab