tune
.tune.svm(x, y = NULL, degree = NULL, gamma = NULL, coef0 = NULL, cost = NULL,
nu = NULL, ...)
best.svm(x, ...)
tune.nnet(x, y = NULL, size = NULL, decay = NULL, nrepeat = 5, trace = FALSE,
predict.func = function(...) predict(..., type = "class"), ...)
best.nnet(x, ...)tune.rpart(formula, data, na.action = na.omit, minsplit = NULL,
minbucket = NULL, cp = NULL, maxcompete = NULL, maxsurrogate = NULL,
usesurrogate = NULL, xval = NULL, surrogatestyle = NULL, maxdepth =
NULL, predict.func = NULL, ...)
best.rpart(formula, ...)
rpart.wrapper(formula, minsplit=20, minbucket=round(minsplit/3), cp=0.01,
maxcompete=4, maxsurrogate=5, usesurrogate=2, xval=10,
surrogatestyle=0, maxdepth=30, ...)
tune.randomForest(x, y = NULL, nodesize = NULL, mtry = NULL, ntree = NULL, ...)
best.randomForest(x, ...)
tune.knn(x, y, k = NULL, l = NULL, ...)
knn.wrapper(x, y, k = 1, l = 0, ...)
rpart
parameters.svm
parameters.knn
parameters.randomForest
parameters.nnet
parameters.tune
.tune.foo
returns a tuning object including the best parameter set obtained
by optimizing over the specified parameter vectors. best.foo
directly returns the best model, i.e. the fit of a new model using the
optimal parameters found by tune.foo
.tune