Learn R Programming

easyanova (version 11.0)

easyanova-package: Analysis of Variance and Other Important Complementary Analyzes

Description

Perform analysis of variance and other important complementary analyzes. The functions are easy to use. Performs analysis in various designs, with balanced and unbalanced data.

Arguments

Author

Emmanuel Arnhold <emmanuelarnhold@yahoo.com.br>

Details

Package:easyanova
Type:Package
Version:11.0
Date:2024-09-14
License:GPL-2

References

CRUZ, C.D. and CARNEIRO, P.C.S. Modelos biometricos aplicados ao melhoramento genetico. 2nd Edition. Vicosa, UFV, v.2, 2006. 585p.

KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.

SAMPAIO, I. B. M. Estatistica aplicada a experimentacao animal. 3nd Edition. Belo Horizonte: Editora FEPMVZ, Fundacao de Ensino e Pesquisa em Medicina Veterinaria e Zootecnia, 2010. 264p.

SANDERS W.L. and GAYNOR, P.J. Analysis of switchback data using Statistical Analysis System, Inc. Software. Journal of Dairy Science, 70.2186-2191. 1987.

PIMENTEL-GOMES, F. and GARCIA C.H. Estatistica aplicada a experimentos agronomicos e florestais: exposicao com exemplos e orientacoes para uso de aplicativos. Editora Fealq, v.11, 2002. 309p.

RAMALHO, M. A. P.; FERREIRA, D. F. and OLIVEIRA, A. C. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA, 2005, 322p.

See Also

ea1, ea2, ec

Examples

Run this code

# Kaps and Lamberson(2009)
data(data1)
data(data2)
data(data3)
data(data4)

# analysis in completely randomized design
r1<-ea1(data1, design=1)

names(r1)

r1

# analysis in randomized block design
r2<-ea1(data2, design=2)

# analysis in latin square design
r3<-ea1(data3, design=3)

# analysis in several latin squares design
r4<-ea1(data4, design=4)

r1[1]
r2[1]
r3[1]
r4[1]

# analysis in unbalanced randomized block design
response<-ifelse(data2$Gain>850, NA, data2$Gain)
ndata<-data.frame(data2[-3],response)
ndata

r5<-ea1(ndata, design=2 )

r5

# multivariable response (list argument = TRUE)
t<-c('a','a','a','b','b','b','c','c','c')
r1<-c(10,12,12.8,4,6,8,14,15,16)
r2<-c(102,105,106,125,123,124,99,95,96)
r3<-c(560,589,590,658,678,629,369,389,378)


d<-data.frame(t,r1,r2,r3)

results=ea1(d, design=1, list=TRUE)
names(results)
results

results[1][[1]]

names(results[1][[1]])

Run the code above in your browser using DataLab