Learn R Programming

easyanova (version 3.0)

ea2: Analysis of variance in factorial and split plot

Description

Perform analysis of variance and other important complementary analyzes in factorial and split plot scheme, with balanced and unbalanced data.

Usage

ea2(data, design = 1, alpha = 0.05, cov = 4, list = FALSE, p.adjust=1, plot=2)

Arguments

data
data is a data.frame

see how the input data in the examples

design
1 = double factorial in completely randomized design

2 = double factorial in randomized block design 3 = double factorial in latin square design

4 = split plot in completely randomized design

5 = split plot in randomized block design

6 = split plot

alpha
significance level for multiple comparisons
cov
for split plot designs

1 = Autoregressive

2 = Heterogenius Autoregressive

3 = Continuous Autoregressive Process

4 = Compound Symetry

5 = Unstructured

list
FALSE = a single response variable

TRUE = multivariable response

p.adjust
1="none"; 2="holm"; 3="hochberg"; 4="hommel"; 5="bonferroni"; 6="BH", 7="BY"; 8="fdr"; for more details see function "p.adjust"
plot
1 = box plot for residuals; 2 = standardized residuals vs sequence data; 3 = standardized residuals vs theoretical quantiles

Value

  • Returns analysis of variance, means (adjusted means), multiple comparison test (tukey, snk, duncan, t and scott knott) and residual analysis.

Details

The response variable must be numeric. Other variables can be numeric or factors.

References

KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.

SAMPAIO, I. B. M. Estatistica aplicada a experimentacao animal. 3nd Edition. Belo Horizonte: Editora FEPMVZ, Fundacao de Ensino e Pesquisa em Medicina Veterinaria e Zootecnia, 2010. 264p.

PIMENTEL-GOMES, F. and GARCIA C.H. Estatistica aplicada a experimentos agronomicos e florestais: exposicao com exemplos e orientacoes para uso de aplicativos. Editora Fealq, v.11, 2002. 309p.

RAMALHO, M. A. P.; FERREIRA, D. F. and OLIVEIRA, A. C. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA, 2005, 322p.

See Also

ea1, ec

Examples

Run this code
# double factorial

# completely randomized design
data(data5)
r1=ea2(data5, design=1) 
r1  

# randomized block design
data(data6)
r2=ea2(data6, design=2) 
r2      
 
names(r1)

names(r2)

# triple factorial

# completely randomized design
data(data9)
r3=ea2(data9[,-4], design=7) 
r3[1]  


# split plot

# completely randomized design
data(data7)
r4=ea2(data7, design=4)
r4

# randomized block design
data(data8)
r5=ea2(data8, design=5)
r5

# hierarchical blocks
# Ramalho et al. (2005)
data(data18)
data18
#r6=ea2(data18, design=11)
#r6

# hierarchical latin squares 
# Sampaio (2010)
data(data19)
data19
#r7=ea2(data19, design=12)
#r8=ea2(data19, design=13)

# hierarchical rows
#r7

# hierarchical rows and columns
#r8

Run the code above in your browser using DataLab