Constructs the block-Hankel matrix \(H\) of autocovariances of time series observations is constructed
(see references for additional information), where the maximum relevant time lag must be specified
as lag
. In the context of gene networks, this corresponds to the maximum relevant biological time
lag between a gene and its regulators. This quantity is experiment-specific, but will generally be
small for gene expression studies (on the order of 1, 2, or 3).
The singular value decomposition of \(H\) is performed, and the singular values are ordered by size
and scaled by the largest singular value. Note that if there are T time points in the data, only the
first (T - 1) singular values will be non-zero.
To choose the number of large singular values, we wish to find the point at which the inclusion of
an additional singular value does not increase the amount of explained variation enough to justify
its inclusion (similar to choosing the number of components in a Principal Components Analysis).
The user-supplied value of cutoff
gives the desired percent of variance explained by the first set
of K principal components. The algorithm returns the value of K, which may subsequently be used
as the dimension of the hidden state in ebdbn
.
The argument 'type' takes the value of "median" or "mean", and is used to determine how results
from replicated experiments are combined (i.e., median or mean of the per-replicate final hidden
state dimension).