Learn R Programming

ecespa (version 1.1-17)

Functions for Spatial Point Pattern Analysis

Description

Some wrappers, functions and data sets for for spatial point pattern analysis (mainly based on 'spatstat'), used in the book "Introduccion al Analisis Espacial de Datos en Ecologia y Ciencias Ambientales: Metodos y Aplicaciones" and in the papers by De la Cruz et al. (2008) and Olano et al. (2009) .

Copy Link

Version

Install

install.packages('ecespa')

Monthly Downloads

522

Version

1.1-17

License

GPL (>= 2)

Last Published

January 5th, 2023

Functions in ecespa (1.1-17)

Kci

Test against non-Poisson (in-)homogeneous models
Kmm

Mark-weighted K-function
K012

Tests against 'independent labelling'
Kinhom.log

Simulation envelopes from the fitted values of a logistic model
ecespa

Functions for spatial point pattern analysis in ecology
LF.gof

Loosmore and Ford Goodness of Fit Test
K1K2

Differences between univariate and bivariate K-functions
Kmulti.ls

Lotwick's and Silverman's combined estimator of the marked K-function
Helianthemum

Spatial point pattern of Helianthemum squamatum adult plants and seedlings
dixon2002

Dixon (2002) Nearest-neighbor contingency table analysis
ecespa-internal

Internal ecespa functions.
ipc.estK

Fit the (In)homogeneous Poisson Cluster Point Process by Minimum Contrast
marksum

Mark-sum measure
getis

Neighbourhood density function
quercusvm

Alive and dead oak trees
pc.estK

Fit the Poisson Cluster Point Process by Minimum Contrast
syrjala.data

Syrjala test data
figuras

Artificial point data.
sim.poissonc

Simulate Poisson Cluster Process
gypsophylous

Spatial point pattern of a plant community
rIPCP

Simulate Inhomogeneous Poisson Cluster Process
seedlings

Cohorts of Helianthemum squamatum seedlings
haz.ppp

Easily convert xy data to ppp format
swamp

Tree Species in a Swamp Forest
p2colasr

P-value for a discrete distribution on small sample data
syrjala

Syrjala's test for the difference between the spatial distributions of two populations