data(gypsophylous)
plot(gypsophylous)
## It 'seems' that the pattern is clustered, so
## fit a Poisson Cluster Process. The limits of integration
## rmin and rmax are setup to 0 and 60, respectively.
cosa.pc2 <- ipc.estK(gypsophylous, r = seq(0, 60, by=0.2))
## Create one instance of the fitted PCP:
pointp <- rIPCP( cosa.pc2)
plot(pointp)
#####################
## Inhomogeneous example
data(urkiola)
# get univariate pp
I.ppp <- split.ppp(urkiola)$birch
plot(I.ppp)
#estimate inhomogeneous intensity function
I.lam <- predict (ppm(I.ppp, ~polynom(x,y,2)), type="trend", ngrid=200)
# It seems that there is short scale clustering; lets fit an IPCP:
I.ki <- ipc.estK(mippp=I.ppp, lambda=I.lam, correction="trans")
## Create one instance of the fitted PCP:
pointpi <- rIPCP( I.ki)
plot(pointpi)
Run the code above in your browser using DataLab