Learn R Programming

ecospat (version 3.2)

ecospat.margin: Delineation of the distribution's margin and its uncertainty

Description

Estimate the margin of the distribution in the bi-dimensional environmental space based on bootstrapped kernel density estimation the percentage of the distribution included within the margin.

Usage

ecospat.margin (z, th.quant, kern.method, bootstrap, bootstrap.rep, bootstrap.ncore)

Arguments

z

object (list) resulting from the function ecospat.grid.clim.dyn

th.quant

The quantile (between 0 and 1) used to delimit a threshold to exclude low species density values (see details)

kern.method

Method used to draw the kernel density estimation. it can be "adehabitat" (default) or "ks"

bootstrap

Boolean. If TRUE, a confidence interval based on bootstrap is estimated for the margin of the distribution

bootstrap.rep

Number of resamplings if the boostrap is selected.

bootstrap.ncore

Number of cores to use for parallelization if the boostrap estimation is selected.

Value

a list with $niche.envelope = a raster of the niche envelope including the distribution, $niche.contour = a SpatiaLine object of the margin, $niche.density = a raster of the niche density within the niche envelope.

Details

th.quant is the quantile of the distribution of species density at occurrence sites. For example, if th.quant is set to 0.05, the margin of the distribution is drawn by including 95 percent of the species occurrences, removing the more marginal populations. If th.quant is set to 0, the margin of the distribution is the minimal envelope including 100 percent of the species occurrences. The bootstrap estimation of the margin allows representing the uncertainty around this margin. By default it returns a contour covering a 95 percents confidence interval (CI), but you can easily choose a custom CI.

See Also

ecospat.plot.niche.dyn

Examples

Run this code
# NOT RUN {
data(ecospat.testData)

sp1 <- ecospat.testData[ecospat.testData$Bromus_erectus == 1, 1:8] # species occurences
clim <- ecospat.testData[4:8] # environment of the study area

#################################### PCA-ENVIRONMENT ##################################
pca.cal <- ade4::dudi.pca(clim, center = TRUE, scale = TRUE, scannf = FALSE, nf = 2)

####### projection of the species distribution into the environmental space ######
# predict the scores on the axes
scores.clim <- pca.cal$li # scores for global climate
scores.sp1 <- ade4::suprow(pca.cal, sp1[, 4:8])$li # scores for sp1

z1 <- ecospat.grid.clim.dyn(scores.clim, scores.clim, scores.sp1, R = 100, 
  extend.extent = c(0, 1, 0, 0))

####### estimate the margin ######
z1.margin <- ecospat.margin(z1, th.quant = 0, bootstrap = FALSE) # including all occurrences
z1.95margin <- ecospat.margin(z1, th.quant = 0.05, 
  bootstrap = FALSE) # including 95 percent of the occurrences
z1.bootstrap.margin <- ecospat.margin(z1,th.quant = 0,
  bootstrap = TRUE, bootstrap.rep = 100) # bootstrap estimation of the niche limit

####### plot the margin and its uncertainty ######
plot(z1.margin$niche.density) # plot of the niche density
points(z1$sp) # with species occurences
plot(z1.margin$niche.contour, add = TRUE) # limit of the margin if you include all the distribution
plot(z1.95margin$niche.contour, col = 2, add = TRUE) # limit of the margin if you exclude the 
                                                  # 5 percents of the most marginal distribution
plot(z1.bootstrap.margin$niche.contour, col = 2, add = TRUE, lty = "dotted") 
      # limit of the niche based on the 95 percent CI of the bootstrap

par(mfrow=c(1,2))
plot(z1.bootstrap.margin$niche.envelope, main = "Margin uncertainty", 
  legend.args=list(text="CI", cex = 0.8)) # shows the uncertainty of the niche margin in raster mode
points(z1$sp) # with species occurences
# shows the uncertainty of the niche limit in vector mode
raster::contour(z1.bootstrap.margin$niche.envelope, col = gray(10:1 / 10), 
  main = "Margin uncertainty") 
confInt80 <- raster::rasterToPolygons(z1.bootstrap.margin$niche.envelope >= 50, dissolve = TRUE, 
  fun = function(x) {x == 1}
  ) # select a customized confidence interval (here for example 80 percent)
plot(as(confInt80, "SpatialLines"), add = TRUE, lty = "dotted", col = 2)
# }

Run the code above in your browser using DataLab