# \donttest{
library(terra)
# coordinates of the plots
xy <- ecospat.testData[,2:3]
# environmental data
predictors <- terra::rast(system.file("extdata","ecospat.testEnv.tif",package="ecospat"))
env <- terra::extract(predictors,xy,ID=FALSE)
spData <- cbind.data.frame(occ=ecospat.testData$Veronica_alpina,env)
mod <- glm(occ~ddeg0+I(ddeg0^2)+srad68+I(srad68^2),data=spData,family = binomial())
# predict to entire dataset
pred <- terra::predict(predictors,mod,type="response")
### make binary maps
# use MPA to convert suitability to binary map
mpa.cutoff <- ecospat.mpa(pred,xy[spData$occ==1,],perc = 0.9) # 90% presences encompassed
pred.bin.mpa <- ecospat.binary.model(pred,mpa.cutoff)
plot(pred.bin.mpa)
points(xy[spData$occ==1,])
# }
Run the code above in your browser using DataLab