Default Gaussian mutation operator known from Evolutionary Algorithms.
This mutator is applicable only for representation="float"
. Given
an individual \(\mathbf{x} \in R^l\) this mutator adds a Gaussian
distributed random value to each component of \(\mathbf{x}\), i.~e.,
\(\tilde{\mathbf{x}}_i = \mathbf{x}_i + \sigma \mathcal{N}(0, 1)\).
mutGauss(ind, p = 1L, sdev = 0.05, lower, upper)
[numeric
]
[numeric
]
Numeric vector / individual to mutate.
[numeric(1)
]
Probability of mutation for the gauss mutation operator.
[numeric(1)
Standard deviance of the Gauss mutation, i. e., the mutation strength.
[numeric
]
Vector of minimal values for each parameter of the decision space.
[numeric
]
Vector of maximal values for each parameter of the decision space.
[1] Beyer, Hans-Georg & Schwefel, Hans-Paul (2002). Evolution strategies. Kluwer Academic Publishers.
[2] Mateo, P. M. & Alberto, I. (2011). A mutation operator based on a Pareto ranking for multi-objective evolutionary algorithms. Springer Science+Business Meda. 57.
Other mutators:
mutBitflip()
,
mutInsertion()
,
mutInversion()
,
mutJump()
,
mutPolynomial()
,
mutScramble()
,
mutSwap()
,
mutUniform()