Normalization is done by subtracting the min.value
for each dimension
and dividing by the difference max.value - min.value
for each dimension
Certain EMOA indicators require all elements to be strictly positive. Hence, an optional
offset
is added to each element which defaults to zero.
normalize(x, obj.cols, min.value = NULL, max.value = NULL, offset = NULL)
[matrix
| data.frame
]
[matrix
| data.frame
]
Either a numeric matrix
(each column corresponds to a point) or a
data.frame
with columns at least obj.cols
.
[character(>= 2)
]
Column names of the objective functions.
[numeric
]
Vector of minimal values of length nrow(x)
.
Only relevant if x
is a matrix.
Default is the row-wise minimum of x
.
[numeric
]
Vector of maximal values of length nrow(x)
.
Only relevant if x
is a matrix.
Default is the row-wise maximum of x
.
[numeric
]
Numeric constant added to each normalized element.
Useful to make all objectives strictly positive, e.g., located in \([1,2]\).
Other EMOA performance assessment tools:
approximateNadirPoint()
,
approximateRefPoints()
,
approximateRefSets()
,
computeDominanceRanking()
,
emoaIndEps()
,
makeEMOAIndicator()
,
niceCellFormater()
,
plotDistribution()
,
plotFront()
,
plotScatter2d()
,
plotScatter3d()
,
toLatex()