Normalization is done by subtracting the min.value for each dimension
and dividing by the difference max.value - min.value for each dimension
Certain EMOA indicators require all elements to be strictly positive. Hence, an optional
offset is added to each element which defaults to zero.
normalize(x, obj.cols, min.value = NULL, max.value = NULL, offset = NULL)[matrix | data.frame]
[matrix | data.frame]
Either a numeric matrix (each column corresponds to a point) or a
data.frame with columns at least obj.cols.
[character(>= 2)]
Column names of the objective functions.
[numeric]
Vector of minimal values of length nrow(x).
Only relevant if x is a matrix.
Default is the row-wise minimum of x.
[numeric]
Vector of maximal values of length nrow(x).
Only relevant if x is a matrix.
Default is the row-wise maximum of x.
[numeric]
Numeric constant added to each normalized element.
Useful to make all objectives strictly positive, e.g., located in \([1,2]\).
Other EMOA performance assessment tools:
approximateNadirPoint(),
approximateRefPoints(),
approximateRefSets(),
computeDominanceRanking(),
emoaIndEps(),
makeEMOAIndicator(),
niceCellFormater(),
plotDistribution(),
plotFront(),
plotScatter2d(),
plotScatter3d(),
toLatex()