Given a data frame with the results of (multiple) runs of (multiple) different three-objective optimization algorithms on (multiple) problem instances the function generates 3D scatterplots of the obtained Pareto-front approximations.
plotScatter3d(
df,
obj.cols = c("f1", "f2", "f3"),
max.in.row = 4L,
package = "scatterplot3d",
...
)
Nothing
[data.frame
]
Data.frame with columns at least obj.cols
, “prob” and “algorithm”.
[character(>= 3)
]
Column names of the objective functions.
Default is c("f1", "f2", "f3")
.
[integer(1)
]
Maximum number of plots to be displayed side by side in a row.
Default is 4.
[character(1L)
]
Which package to use for 3d scatterplot generation?
Possible choices are “scatterplot3d”, “plot3D”, “plot3Drgl”
or “plotly”.
Default is “scatterplot3d”.
[any]
Further arguments passed down to scatterplot function.
Other EMOA performance assessment tools:
approximateNadirPoint()
,
approximateRefPoints()
,
approximateRefSets()
,
computeDominanceRanking()
,
emoaIndEps()
,
makeEMOAIndicator()
,
niceCellFormater()
,
normalize()
,
plotDistribution()
,
plotFront()
,
plotScatter2d()
,
toLatex()