Learn R Programming

edarf (version 1.1.0)

plot_prox: Plot principle components of the proximity matrix

Description

Plot principle components of the proximity matrix

Usage

plot_prox(pca, dims = 1:2, labels = NULL, alpha = 1, alpha_label = NULL, color = "black", color_label = NULL, shape = "1", shape_label = NULL, size = 2, size_label = NULL, xlab = NULL, ylab = NULL, title = "")

Arguments

pca
a prcomp object, pca of an n x n matrix giving the proportion of times across all trees that observation i,j are in the same terminal node
dims
integer vector of length 2 giving indices for the dimensions of pca to be plotted
labels
length n character vector giving observation labels
alpha
optional continuous vector of length n make points/labels transparent or a numeric of length 1 giving the alpha of all points/labels
alpha_label
character legend title if alpha parameter used
color
optional discrete vector of length n which colors the points/labels or a character vector giving the color of all points/labels
color_label
character legend title if color parameter is used
shape
optional discrete vector of length n which shapes points (not applicable if labels used) or a character vector of length 1 which gives the shape of all points
shape_label
character legend title if shape parameter is used
size
optional continuous vector of length n which sizes points or labels or a numeric of length 1 which gives the sizes of all the points
size_label
character legend title if size parameter used
xlab
character x-axis label
ylab
character y-axis label
title
character plot title

Value

a ggplot object

References

https://github.com/vqv/ggbiplot

Gabriel, "The biplot graphic display of matrices with application to principal component analysis," Biometrika, 1971

Examples

Run this code
library(randomForest)

fit <- randomForest(hp ~ ., mtcars, proximity = TRUE)
prox <- extract_proximity(fit)
pca <- prcomp(prox, scale = TRUE)
plot_prox(pca, labels = row.names(mtcars))

fit <- randomForest(Species ~ ., iris, proximity = TRUE)
prox <- extract_proximity(fit)
pca <- prcomp(prox, scale = TRUE)
plot_prox(pca, color = iris$Species, color_label = "Species", size = 2)

Run the code above in your browser using DataLab