## S3 method for class 'DGEList':
estimateCommonDisp(y, tol=1e-06, rowsum.filter=5, verbose=FALSE, ...)
## S3 method for class 'default':
estimateCommonDisp(y, group=NULL, lib.size=NULL, tol=1e-06,
rowsum.filter=5, verbose=FALSE, ...)
DGEList
object.optimize
.TRUE
then the estimated dispersion and BCV will be printed to standard output.estimateCommonDisp.DGEList
adds the following components to the input DGEList
object:y
.estimateCommonDisp.default
returns a numeric scalar of the common dispersion estimate.The CML method involves computing a matrix of quantile-quantile normalized counts, called pseudo-counts. The pseudo-counts are adjusted in such a way that the library sizes are equal for all samples, while preserving differences between groups and variability within each group. The pseudo-counts are included in the output of the function, but are intended mainly for internal edgeR use.
equalizeLibSizes
,
estimateTrendedDisp
,
estimateTagwiseDisp
# True dispersion is 1/5=0.2
y <- matrix(rnbinom(250*4,mu=20,size=5),nrow=250,ncol=4)
dge <- DGEList(counts=y,group=c(1,1,2,2))
dge <- estimateCommonDisp(dge, verbose=TRUE)
Run the code above in your browser using DataLab