Learn R Programming

edge (version 2.4.2)

lrt: Performs F-test (likelihood ratio test using Normal likelihood)

Description

lrt performs a generalized likelihood ratio test using the full and null models.

Usage

lrt(object, de.fit, nullDistn = c("normal", "bootstrap"), weights = NULL,
  bs.its = 100, seed = NULL, verbose = TRUE, mod.F = FALSE, ...)

## S3 method for class 'deSet,missing': lrt(object, de.fit, nullDistn = c("normal", "bootstrap"), weights = NULL, bs.its = 100, seed = NULL, verbose = TRUE, mod.F = FALSE, ...)

## S3 method for class 'deSet,deFit': lrt(object, de.fit, nullDistn = c("normal", "bootstrap"), weights = NULL, bs.its = 100, seed = NULL, verbose = TRUE, mod.F = FALSE, ...)

Arguments

object
S4 object: deSet.
de.fit
S4 object: deFit. Optional.
nullDistn
character: either "normal" or "bootstrap", If "normal" then the p-values are calculated using the F distribution. If "bootstrap" then a bootstrap algorithm is implemented to simulate statistics from the null distribution. In the "bootstrap" case, empirical p-values are calculated using the observed and null statistics (see empPvals). Default is "normal".
weights
matrix: weights for each observation. Default is NULL.
bs.its
integer: number of null statistics generated (only applicable for "bootstrap" method). Default is 100.
seed
integer: set the seed value. Default is NULL.
verbose
boolean: print iterations for bootstrap method. Default is TRUE.
mod.F
boolean: Moderated F-test, recommended for experiments with a small sample size. Default is FALSE.
...
Additional arguments for apply_qvalue and empPvals function.

Value

  • deSet object

Details

lrt fits the full and null models to each gene using the function fit_models and then performs a likelihood ratio test. The user has the option to calculate p-values a Normal distribution assumption or through a bootstrap algorithm. If nullDistn is "bootstrap" then empirical p-values will be determined from the qvalue package (see empPvals).

References

Storey JD, Xiao W, Leek JT, Tompkins RG, and Davis RW. (2005) Significance analysis of time course microarray experiments. Proceedings of the National Academy of Sciences, 102: 12837-12842.

http://en.wikipedia.org/wiki/Likelihood-ratio_test

See Also

deSet, build_models, odp

Examples

Run this code
# import data
library(splines)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr
cov <- data.frame(sex = sex, age = age)

# create models
null_model <- ~sex
full_model <- ~sex + ns(age, df = 4)

# create deSet object from data
de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model,
full.model = full_model)

# lrt method
de_lrt <- lrt(de_obj, nullDistn = "normal")

# to generate p-values from bootstrap
de_lrt <- lrt(de_obj, nullDistn = "bootstrap", bs.its = 30)

# input a deFit object directly
de_fit <- fit_models(de_obj, stat.type = "lrt")
de_lrt <- lrt(de_obj, de.fit = de_fit)

# summarize object
summary(de_lrt)

Run the code above in your browser using DataLab