# generate counts for a two group experiment with n=2 in each group and 100 genes
dispersion <- 0.1
y <- matrix(rnbinom(400,size=1/dispersion,mu=4),nrow=100)
y <- DGEList(y,group=c(1,1,2,2))
design <- model.matrix(~group, data=y$samples)
#estimate the predictive log fold changes
predlfc<-predFC(y,design,dispersion=dispersion,prior.count=1)
logfc <- predFC(y,design,dispersion=dispersion,prior.count=0)
logfc.truncated <- pmax(pmin(logfc,100),-100)
#plot predFC's vs logFC's
plot(predlfc[,2],logfc.truncated[,2],xlab="Predictive log fold changes",ylab="Raw log fold changes")
abline(a=0,b=1)
Run the code above in your browser using DataLab