"estimateDisp"(y, design=NULL, prior.df=NULL, trend.method="locfit", mixed.df=FALSE, tagwise=TRUE, span=NULL, min.row.sum=5, grid.length=21, grid.range=c(-10,10), robust=FALSE, winsor.tail.p=c(0.05,0.1), tol=1e-06, ...)
"estimateDisp"(y, design=NULL, group=NULL, lib.size=NULL, offset=NULL, prior.df=NULL, trend.method="locfit", mixed.df=FALSE, tagwise=TRUE, span=NULL, min.row.sum=5, grid.length=21, grid.range=c(-10,10), robust=FALSE, winsor.tail.p=c(0.05,0.1), tol=1e-06, weights=NULL, ...)DGEList object.prior.n."none", "movingave", "loess" and "locfit" (default).trend.method="locfit". If FALSE, locfit uses a polynomial of degree 0. If TRUE, locfit uses a polynomial of degree 1 for lowly expressed genes. Care is taken to smooth the curve.prior.df be robustified against outliers?prior.df.optimizeglmFit. Defaults to the log-effective library sizes.estimateDisp.DGEList adds the following components to the input DGEList object:
tagwise=TRUE.y.estimateDisp.default returns a list containing common.dispersion, trended.dispersion, tagwise.dispersion (if tagwise=TRUE), span, prior.df and prior.n.
estimateCommonDisp and estimateTagwiseDisp. If a design matrix is given, it calculates the adjusted profile log-likelihood for each tag and then maximizes it. In this case, it is similar to the functions estimateGLMCommonDisp, estimateGLMTrendedDisp and estimateGLMTagwiseDisp.Note that the terms `tag' and `gene' are synonymous here.
Phipson, B, Lee, S, Majewski, IJ, Alexander, WS, and Smyth, GK (2016). Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Annals of Applied Statistics 10. http://arxiv.org/abs/1602.08678
estimateCommonDisp, estimateTagwiseDisp, estimateGLMCommonDisp, estimateGLMTrendedDisp, estimateGLMTagwiseDisp
# True dispersion is 1/5=0.2
y <- matrix(rnbinom(1000, mu=10, size=5), ncol=4)
group <- c(1,1,2,2)
design <- model.matrix(~group)
d <- DGEList(counts=y, group=group)
d1 <- estimateDisp(d)
d2 <- estimateDisp(d, design)
Run the code above in your browser using DataLab