# NOT RUN {
## t Tests
res <- t.test(1:10, y = c(7:20), var.equal = TRUE)
t_to_d(t = res$statistic, res$parameter)
t_to_r(t = res$statistic, res$parameter)
res <- with(sleep, t.test(extra[group == 1], extra[group == 2], paired = TRUE))
t_to_d(t = res$statistic, res$parameter, pooled = TRUE)
t_to_r(t = res$statistic, res$parameter)
res <- cor.test(iris$Sepal.Width, iris$Petal.Width)
t_to_r(t = res$statistic, n = 150)
# }
# NOT RUN {
## Linear Regression
model <- lm(Sepal.Length ~ Sepal.Width + Petal.Length, data = iris)
library(parameters)
(param_tab <- parameters(model))
# > Parameter | Coefficient | SE | 95% CI | t | df | p
# > -----------------------------------------------------------------------
# > (Intercept) | 2.25 | 0.25 | [1.76, 2.74] | 9.07 | 147 | < .001
# > Sepal.Width | 0.60 | 0.07 | [0.46, 0.73] | 8.59 | 147 | < .001
# > Petal.Length | 0.47 | 0.02 | [0.44, 0.51] | 27.57 | 147 | < .001
t_to_r(param_tab$t[2:3], param_tab$df_error[2:3])
# > [1] 0.5781005 0.9153894
# }
# NOT RUN {
# How does this compare to actual partial correlations?
if (require("ppcor")) {
pcor(iris[1:3])$estimate[1, -1]
}
# }
Run the code above in your browser using DataLab