Learn R Programming

effectsize (version 0.4.1)

interpret_d: Interpret standardized differences

Description

Interpretation of standardized differences using different sets of rules of thumb.

Usage

interpret_d(d, rules = "cohen1988", ...)

interpret_g(g, rules = "cohen1988")

interpret_delta(delta, rules = "cohen1988")

Arguments

d, g, delta

Value or vector of effect size values.

rules

Can be "cohen1988" (default), "gignac2016", "sawilowsky2009" or custom set of rules().

...

Not directly used.

Rules

Rules apply to equally to positive and negative d.

  • Cohen (1988) ("cohen1988"; default)

    • d < 0.2 - Very small

    • 0.2 <= d < 0.5 - Small

    • 0.5 <= d < 0.8 - Medium

    • d >= 0.8 - Large

  • Sawilowsky (2009) ("sawilowsky2009")

    • d < 0.1 - Tiny

    • 0.1 <= d < 0.2 - Very small

    • 0.2 <= d < 0.5 - Small

    • 0.5 <= d < 0.8 - Medium

    • 0.8 <= d < 1.2 - Large

    • 1.2 <= d < 2 - Very large

    • d >= 2 - Huge

  • Gignac & Szodorai (2016) ("gignac2016", based on the d_to_r() conversion, see interpret_r())

    • d < 0.2 - Very small

    • 0.2 <= d < 0.41 - Small

    • 0.41 <= d < 0.63 - Moderate

    • d >= 0.63 - Large

References

  • Gignac, G. E., & Szodorai, E. T. (2016). Effect size guidelines for individual differences researchers. Personality and individual differences, 102, 74-78.

  • Cohen, J. (1988). Statistical power analysis for the behavioural sciences.

  • Sawilowsky, S. S. (2009). New effect size rules of thumb.

Examples

Run this code
# NOT RUN {
interpret_d(.02)
interpret_d(c(.5, .02))
# }

Run the code above in your browser using DataLab