mod <- aov(mpg ~ factor(cyl) * factor(am), mtcars)
anova(mod)
(etas <- F_to_eta2(
f = c(44.85, 3.99, 1.38),
df = c(2, 1, 2),
df_error = 26
))
if (require(see)) plot(etas)
# Compare to:
eta_squared(mod)
if (FALSE) { # require(lmerTest) && interactive()
fit <- lmerTest::lmer(extra ~ group + (1 | ID), sleep)
# anova(fit)
# #> Type III Analysis of Variance Table with Satterthwaite's method
# #> Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
# #> group 12.482 12.482 1 9 16.501 0.002833 **
# #> ---
# #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
F_to_eta2(16.501, 1, 9)
F_to_omega2(16.501, 1, 9)
F_to_epsilon2(16.501, 1, 9)
F_to_f(16.501, 1, 9)
}
if (FALSE) { # require(emmeans)
## Use with emmeans based contrasts
## --------------------------------
warp.lm <- lm(breaks ~ wool * tension, data = warpbreaks)
jt <- emmeans::joint_tests(warp.lm, by = "wool")
F_to_eta2(jt$F.ratio, jt$df1, jt$df2)
}
Run the code above in your browser using DataLab